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Resumo

O namero de sequéncias bioldgicas disponiveis aumentou significativamente nos tltimos anos
devido a vdrias descobertas cientificas sobre o cddigo genético que compde os seres vivos, criando
um enorme volume de dados. Por consequéncia, novos métodos computacionais foram moldados
para analisar e extrair informacdes dessas sequéncias genéticas. Os métodos de aprendizado
de médquina (AM) tém mostrado ampla aplicabilidade em bioinformética e demonstrou ser
imprescendivel para a extragdo de informacdes uteis das estruturas secunddrias dos genomas
ao aperfeicoar suas técnicas com base no arquétipo matemadtico em contraste com o modelo
padrdo biol6gico de andlise. Diante disso, este trabalho visa analisar os modelos mateméticos
de extracdo de caracteristicas, principalmente as técnicas de extracdo que demonstraram ser
eficientes na classificagdo de snoRNAs C/D box em organismos vertebrados e invertebrados com
um F-score de 98% e na classificacdo de snoRNAs H/ACA box com um F-score de 95%. Os
algoritmos como os da Transformacdo Numérica de Fourier e de Redes Complexas atingiram
uma taxa maior que 90% na classificacdo de snoRNAs C/D box e H/ACA box em sequéncias
genéticas de Homo Sapiens, Platypus, Gallus gallus, Nematodes, Drosophila e Leishmania
demonstrando ser promissor nas moléculas de RNAs nao-codificadores (ncRNA) da classe de
snoRNAs.

Palavras-chave: RNAs nao codificadores, snoRNAs, Aprendizagem de Maquina, Modelos
matematicos de extracdo de caracteristicas, classificacdo de sequéncias biolégicas, C/D box,
H/ACA box, Random Forest



Abstract

The number of biological sequences available has increased significantly in recent years due
to several scientific discoveries about the genetic code that composes living beings, creating a
huge volume of data. Consequently, new computational methods were shaped to analyze and
extract information from these genetic sequences. The learning methods (AM) have shown wide
applicability in bioinformatics and proven to be essential for the selection of useful information
from the secondary structures of genomes by perfecting his techniques based on the mathematical
archetype in contrast to the model biological standard of analysis. Therefore, this work aims to
analyze the mathematical models for feature extraction, mainly extraction techniques that were
verified efficient in classifying C/D box snoRNAs in vertebrate and invertebrate organisms with
an F-score of 98% and in classifier snoRNAs as H/ACA box with an F-score of 95%. Algorithms
such as Fourier Numerical Transformation and Complex Networks reached a greater than 90%
rate in classifying C/D box and H/ACA box snoRNAs in genetics sequences of Homo Sapiens,
Platypus, Gallus gallus, Nematodes, Drosophila and Leishmania proving to be promising in
non-coding RNA (ncRNA) molecules of the class of snoRNAs.

Keywords: non-coding RNAs, snoRNAs, Machine Learning, mathematical models for feature

extraction, biological sequences classification, C/D box, H/ACA box, Random Forest
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Introducao

A expansdo do Aprendizado de Maquina (AM) e de técnicas bioldgicas para a predi¢ao
de estruturas protéicas e gendmicas e também para o diagndstico de doengas, trouxe um resultado
significado no que tange a identificacdo de padrodes e caracteristicas em RNAs ndo-codificadores
(ncRNAs). De acordo com BONIDIA et al. (2021a), existem aplicagdes modernas que extraem
propriedades bioldgicas relevantes para o estudo dessas moléculas como quadro de leitura aberto
(ORF), o uso da frequéncia de triplets (nucleotideos "trig€meos"adjacentes) e a porcentagem
de conteddo GC. A aplicabilidade de cunho biolégico, apesar de expressivo, dificilmente tem
reutilizacdo ou adaptagdo para problemas especificos tal como classificar as classes de RNAs
nao-codificadores (ncRNAs).

Um exemplo disso € a classe de pequenos RNAs nucleolares (snoRNAs) que podem ser
divididos em duas classes: C/D box e H/ACA box. Em uma sequéncia de ncRNA, através da
extracao de caracteristicas da estrutura secundéria, em conjunto com técnicas de aprendizado
supervisionado, auxiliam na identificacao das classes C/D box e H/ACA box snoRNAs, como
visto na dissertacao de ARAUJO (2017).

A construcdo de um modelo preditivo devido as limita¢des dos experimentos manuais
no laboratério a fim de otimizar o desempenho dos modelos atuais de aprendizado de maquina
também inclui uma representacao matematica das sequéncias bioldgicas por meio do mapeamento
numérico e a transformacao de Fourier. A ado¢@o de uma abordagem matemdtica no contexto de
ncRNAs demonstrou ser promissora nos experimentos de BONIDIA et al. (2021a) ao comparar a
sua efici€ncia com os algoritmos particulamente de natureza bioldgica computacional.

O pacote MathFeature, proposto por BONIDIA et al. (2021b), contém 37 features
descritivas para sequencias biologicas. Dentre estas 37, 20 sdo baseadas em uma analise
matematica incluindo tanto a transformacao de Fourier quanto o mapeamento numérico, mas
também a entropia, grafos, redes complexas e CGR (Chaos game representation) em sua

composi¢do. Os casos de estudo alcancaram resultados experimentais significativos.
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1.1 Formulacio do problema

A extracdo de caracteristicas busca gerar um vetor de caracteristicas para uma determi-
nada estrutura baseado no treinamento intensivo do modelo. A busca por técnicas de AM capazes
de identificar as caracteristicas de estruturas secundarias de RNAs tornou-se fundamental ao
longo dos ultimos anos devido a grande quantidade de dados sobre o contetido genético.

Os métodos tradicionais de extracdo de caracteristicas do AM nem sempre conseguem
determinar um modelo eficaz que consiga evitar a perda de informacdes da estrutura, um bom
exemplo disso € para as classes de snoRNAs. Para ilustrar a ideia, o estudo de BONIDIA et al.
(2021a), € relatado que a técnica ORF, cuja € bastante aplicada no meio bioldgico para leitura
sequencial do cddon, retornou uma pontuagdo inferior a 0,009 para classificar o RNA circular de
outros tipos de IncRNAs.

Além desse fato, os autores de BONIDIA et al. (2021b) mostraram que a eficiéncia de
algoritmos para classificacdo de classes de IncRNAs demonstraram amplo proveito nos estudos
de caso obtendo um desempenho entre 0.6350-0.9897 de eficacia na fase de avaliacdo, o que €
extremamente vantajoso para a classificacao de IncRNAs.

Diante disso, a questdo norteadora do trabalho € assumida na hipétese a seguir:

= Hipétese - Os métodos matematicos, apesar de generalistas, sdo bons o suficiente
como os bioldgicos para classificar as duas classes de snoRNAs: H/ACA box e C/D

box.

Pretende-se analisar e fundamentalizar a hip6tese baseado nos resultados obtidos de

experimentos em casos de testes.

1.2 Objetivos

1.2.1 Objetivos gerais

Este trabalho tem como objetivo geral a andlise de modelos matematicos de extragcdo de
caracteristicas para as classes de snoRNAs C/D box e H/ACA box.
1.2.2 Objetivos especificos

1. Realizar a coleta e tratamento de dados de snoRNAs para a criacdo do conjunto de

dados de treinamento e teste;

2. Usar um algoritmo de extracdo de features com abordagem matemdtica como a
transformacao de Fourier, mapeamento numérico, entropia (Shannon e Tsallis), redes

complexas, EDeN e/ou etc;

3. Extrair as features a partir de modelos matematicos de ambas as classes de snoRNAs
(H/ACA box e C/D box);
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4. Avaliar o desempenho de diferentes técnicas de extracdo de caracteristicas no algo-

ritmo Random Forest;

5. Avaliar o performance dos melhores modelos gerados em sequéncias identificadas na

literatura;

Os capitulos estao divididos em torno do referencial teérico, revisdo da literatura, ca-
pitulo de projeto, resultados e conclusdo. O referencial tedrico contextualizard, na se¢do de
Bioinformatica, o que sdo moléculas de RNA, o mecanismo molecular e sua sintese proteica e
explicard sobre os tipos de ncRNAs, dando énfase na familia de snoRNAs.

Ainda no referencial tedrico, haverd uma secdo especifica para descrever o conceito de
AM e os algoritmos de aprendizado supervisionado ou nao-supervisionado. Sera destacado os
algoritmos SVM, CNN, EDeN e Random Forest e o seu funcionamento em torno dos diversos
problemas de classificacio e regressao.

Em sequéncia, os métodos de extracdo de caracteristicas de natureza matematica serdo
abordados como as transformacdes numéricas de Fourier, as entropias de Tsallis e Shannon
e as redes complexas. Cada algoritmo tem sua particularidade e importancia de atuagdo na
identificacdo de atributos das sequéncias genética, o que serd enfatizado nas subsecdes deste
capitulo.

Ap6s a defini¢do dos algoritmos de extracdo, serd introduzido o conceito de sobre-ajuste
(overfitting), um problema recorrente na classificacdo que deve ser evitado a todo custo para que
nao se tenha resultados adulterados.

Finalmente, a técnica de validagcdo cruzada terd seu destaque pois € um dos métodos
aplicaveis que previne o sobre-ajuste de dados nas etapas de treinamento e testes. Dessa forma,
com os resultados do classificador auténticos, a dltima se¢do explica as métricas de avaliacao
que serdao consumidas para apreciacdo do modelo.

As revisdes de literatura explicam a construg@o do estado de conhecimento, as questdes
de pesquisa que nortearam o trabalho, as estratégias de busca em torno dos bancos de dados
e repositorios, os critérios de inclusdo e exclusio de artigos literdrios e por fim, a andlise e
discussdo das literaturas que mais tiveram notoriedade como referéncia a esta monografia.

No capitulo de projeto as etapas de AM serdo explicadas detalhadamente conforme
foi empregado no trabalho. Desde a coleta de dados, a etapa de pré-processamento de dados,
extracao de caracteristicas, até treinamento e testes considerando os estudos de caso definidos
em torno da classificacdo de snoRNAs.

Até que enfim o capitulo de resultados demonstra a eficiéncia do classificador, as estatis-
ticas minuciosas de cada método de extracdo na fase de testes, o comparativo entre o software
snoReport 2.0 da literatura de ARAUJO (2017) nas sequéncias de organismos vertebrados e

invertebrados das classes snoRNAs comentados nas literaturas previstas.



17

Referencial tedrico

As proximas secdes abordardo os principais conceitos sobre cada temdtica da bioinfor-
matica apontando o campo de pesquisa para os ncRNAs do tipo snoRNAs.

Na primeira se¢do serd discutido sobre a importancia da bioinformdtica na drea cientifica
apresentando o objeto de pesquisa desde os dcidos nucleicos e sua sintese proteica até os ncRNAs
e por fim os snoRNAs da classe C/D e H/ACA.

Na segunda secdo serd retratado a defini¢do de apredizagem de méquina explicando as
suas caracteristicas, metodologia, fluxo de trabalho e os principais algoritmos de classificacdo e
regressao.

A terceira secao serd responsavel em explicar os algoritmos usados neste trabalho de
extracdo de caracteristica de natureza matematica (Transformacao de Fourier com 0 mapeamento
numérico Real e Z-Curve, Entropia de Shannon e Tsallis e Redes Complexas)

A quarta secao ird explicar sobre um dos problemas mais comuns no espectro de AM
chamado overfitting. Esta secdo ird detalhar a relagdo causa e consequéncia do sobre-ajuste e
mostrard as possiveis tomadas de decisdo que irdo evitar e prevenir que esta situagdo ocorra no
seu modelo.

A penultima se¢do explicard a importancia da validacdo cruzada na fase de treinamento
e de testes na aprimoracdo do modelo preditivo, a ideia é constatar que o particionamento do
conjunto em pequenas partes influenciard no resultado final do classificador.

Finalmente, na ultima se¢do, as métricas de avaliagdo serdo elucidadas. Cada métrica
avalia a acurdcia do classificador e em sua maioria utilizam a matriz de confusdo como base de

calculo estatistico. A partir de seus resultados, o0 modelo preditivo serd ponderado.

2.1 Bioinformatica

A bioinformética € a drea de pesquisa que mescla as ciéncias bioldgicas e computacionais
para o gerenciamento computacional de todos os tipos de informacdes biologicas moleculares,
lidando com a estrutura e os aspectos funcionais dos genes e proteinas. Tém como objetivo
desenvolver técnicas modernas para identificacdo de caracteristicas do objeto de andlise com o

intuito de expandir a produgdo de farmacoldgicos, o descobrimento de vacinas, cura para doengas,
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dentre outros. Os estudos sobre o sequenciamento de moléculas genéticas e a andlise sistemadtica
de cadeias protéicas dos acidos nucleicos (DNAs e RNAs) evidenciaram que existe uma classe

de pequenas moléculas de RNAs que desempenham um papel importante nos processos celulares
RANA; VAISLA (2012).

2.1.1 Acidos nucleicos

De acordo com SETUBAL; MEIDANIS (1997), ao que tange sobre 4cidos nucleicos, sdo
moléculas formadas por nucleotideos responsaveis por armazenar e transmitir as informagdes
genéticas necessdrias para a producio de proteinas, bem como a transcri¢io do conteddo a
partir do processo de reproducgdo celular. Os seres vivos, em sua composicao, contém dois tipos
importantes de dcidos nucleicos: 0 DNA e o RNA. O DNA (4cido desoxirribonucleico) detém
a funcdo de armazenar e transmitir essas informag¢des enquanto o RNA (4cido ribonucleico)
transcreve-as para formar a sintese protéica.

Na biologia molecular, dois nucleotideos em fitas complementares de DNA ou RNA que
estdo conectados por ligagdes de hidrogénio sdo chamados de par de bases nitrogenadas. No
pareamento de bases Watson-Crick canonico no DNA, a adenina (A) forma um par de bases com
a timina (T) usando duas ligacdes de hidrogénio, e a guanina (G) forma um par de bases com a
citosina (C) usando trés ligacdes de hidrogénio. No pareamento de bases Watson-Crick canonico
no RNA, a timina € substituida por uracila (U) WATSON-CRICK PAIRING (2011). A figura

2.1 demonstra como funciona as ligacdes entre as bases nitrogenadas.

Sugar — N \ uanine
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Figura 2.1: Extraido de SETUBAL; MEIDANIS (1997) para representar as ligagdes entre as
bases nitrogenadas.

2.1.2 Mecanismo molecular e sintese protéica

O mecanismo celular reconhece o inicio de um gene ou agrupamento de genes gracas ao

promotor, que € uma regido antes de cada gene no DNA que serve de indicagdo a0 mecanismo
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celular que um gene estd a frente. Tendo reconhecido o inicio de um gene ou agrupamento de
genes, uma copia do gene é feita em uma molécula de RNA. Este RNA resultante ¢ o RNA
mensageiro (MRNA) e terd exatamente a mesma sequéncia que uma das fitas do gene, mas
substituindo a base nitrogenada U por T. Esse processo ¢ chamado de transcricdo. O mRNA
resultante serd entdo usado em estruturas celulares chamadas ribossomos para fabricar uma
proteina.

Como o RNA ¢ de fita simples e o DNA ¢ de fita dupla, o mRNA produzido € idéntico em
sequéncia a apenas uma das fitas génicas, sendo complementar a outra fita, tendo em mente que
T € substituido por U no RNA. A fita que se parece com o produto de mRNA é chamado de fita
antisense ou codificadora, e a outra € a fita sense ou anticodificacdo ou entdo fita molde. A fita
molde € a que realmente € transcrita, pois 0 mRNA é composto pela unido de ribonucleotideos
complementares a esta fita.

A proteina € uma macromolécula formada por uma cadeia de aminoécidos pareadas
por uma ligacdes peptidicas que conectam um adtomo de carbono pertencente a carboxila a um
ou mais dtomos de nitrogé€nio. Ao efetuar a ligacdo, uma molécula de dgua € liberada porque
0 oxigénio e o hidrogénio da carboxila se une a um hidrogénio do grupo de amina. Assim, o
que realmente encontramos dentro de uma cadeia polipeptidica € um residuo do aminoacido
original. As proteinas tipicas contém cerca de 300 residuos, mas existem proteinas com apenas
100 ou com até 5.000 residuos SETUBAL; MEIDANIS (1997). A figura 2.2 apresenta alguns
aminodcidos bastante importantes da cadeia polipeptidica.

Glicina Alanina Valina Isoleucina Leucina Fenilalanina
Tirosina Triptofano Lisina Arginina
Histidina Acido Acido Asparagina Glutamina

aspartico glutamico

Cisteina Metionina Serina Treonina Prolina

Figura 2.2: Moléculas de aminoacidos conhecidas. SANTOS (2019)

Portanto, para identificar uma proteina, € necessdrio decodificar cada aminoacido que ela
contém. E isso é precisamente o que o DNA em um gene faz, usando triplas de nucleotideos
para especificar cada aminodcido. Cada tripla de nucleotideos é chamado de c6don. As triplas
de nucleotideos sdao dados usando bases de RNA em vez de bases de DNA, a razdo € que sdo as

moléculas de RNA que fornecem a ligacao entre o DNA e a sintese protéica em um processo
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chamado de traduc@o. A conexdo que designa a sintese protéica € feita entre um cédon e o
aminodcido que este codon codifica. Cada molécula de RNA transportador (tRNA) possui, de
um lado, uma conformagdo que possui alta afinidade por um cédon especifico e, do outro lado,
uma conformagcio que liga-se facilmente ao aminoécido correspondente. A medida que o RNA
mensageiro passa o interior do ribossomo, um tRNA correspondente ao cddon atual se liga a ele,
trazendo o aminoacido RANA; VAISLA (2012).

Um aspecto do processo de transcricao importante € o conceito de quadro da leitura.
Um quadro de leitura aberto, ou ORF, em uma sequéncia de DNA € um trecho contiguo dessa
sequéncia comecando no cédon inicial, tendo um nimero inteiro de cddons (seu comprimento
¢ um multiplo de trés) tal que nenhum de seus cédons seja um coddo de terminagdo (uma
tripla de nucle6tidos que sinaliza a terminacdo da tradugdo). Uma das trés formas possiveis
de agrupar bases para formam cdédons em uma sequéncia de DNA ou RNA. Por exemplo, a
sequéncia TAATCGAATGGGC pode ser decodificada tomando como cédons TAA, TCG, AAT,
GGG, deixando de fora o dltimo C. Outro quadro de leitura seria ignorar o primeiro T e obter
os cddons AAT, CGA, ATG, GGC. Ainda outro quadro de leitura produziria os cédons ATC,
GAA, TGG, deixando de fora duas bases no inicio (TA) e duas bases no final (GC) PAYNE
(2017). Visualmente, a imagem 2.3 apresenta a estrutura de um RNA do virus SARS coronavirus,
mostrando que € possivel trocar as bases nitrogenadas se a transcricdo para cédon ndo afetar as

suas ligacoes peptideas.
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SARS coronavirus — 1 frameshift

____tSer [ Thr [ Phe [Leu [ Asn] Gly | Phe [ Ala | ORF1

—UCA ACG UUU UUA AAC GGG UUU GCG

\’ ORF2
~-UCA ACG UUU UUA AA C GG GUU UGC G
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Figura 2.3: Um pseudo-né de RNA direcionando a estrutura ribossdmica na sintese protéica.
Extraido de PAYNE (2017)
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2.1.3 ncRNAs

As regides de proteinas ndo-codificadas abrangem 98% do genoma humano e caracteri-
zam por ser uma regido a qual os RNAs detectados ndo sdo codificados a partir da sintese protéica.
Os RNAs néo traduzidos em proteinas foram nomeados RNAs ndo-codificadores (ncRNA) e
foram considerados, a principio, como um ruido ou subprodutos do fluxo de informacgdo genética
do DNA a proteina. A falta de dados cientificos atribuindo fun¢des para a maioria das regides
nao codificantes do genoma reforca a ideia de que essa maioria pode realmente ser descartdvel.
No entanto, hoje, é conhecido que os ncRNAs estdo envolvidos em vérias atividades celulares,
como silenciamento de genes, replicacao, regulacdo da expressao génica, transcrigdo, estabili-
dade cromossdmica, estabilidade de proteinas, translocacio e localiza¢do, modificacdo de RNA,
processamento e estabilidade CHAKRAVORTY (2022).

A predi¢ao de estruturas conservadas é um fator preponderante para descobrir e caracteri-
zar assinaturas para uma familia de RNA especifica. Ao tratar sobre ncRNAs, a sua identificagdao
esta estritamente ligada a sua estrutura tercidria e, como a estrutura tercidria é determinada
pela estrutura secunddria, esta dltima é usada como uma aproximac¢ao no estudo de fungdes
em ncRNAs, para ter uma melhor no¢do de como € a estrutura de um ncRNA, a figura 2.4
mostra sua composicao em forma de grafo. Se a fungdo de um unico RNA ou de uma familia
nao for conhecida, pode-se inferir comparando a estrutura de RNA (ou consenso no caso de
uma familia) com um banco de dados de assinaturas estruturais secundarias. A comparagao
estrutural pode também ser usada para detectar a ocorréncia de diferentes estruturas estdveis
para a mesma molécula (o que pode indicar uma possivel mudanga na estrutura secundaria
impactando diretamente na sua fung@o) para prever e comparar as mutacdoes em uma sequéncia
de RNA GUSIC; PROKISCH (2020)

Figura 2.4: Estrutura secundaria do icd-II ncRNA. Extraida de GUSIC; PROKISCH (2020)
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A designacgio de familias de ncRNAs a partir da comparacao estrutural secundéria de
sequéncias de ncRNAs, procurando RNAs homoélogos a um candidato especifico ou que pertence
a uma familia de candidatos continua sendo um problema especifico da classificacdo de ncRNAs.
Em tese, a pesquisa de ncRNA envolve trés tipos principais de problemas de reconhecimento de
padrdes em ncRNas, segundo LIMA; PORTILLO (2007), sdo eles:

s Predicdo da estrutura secundéria: O ndmero de estruturas secunddrias possiveis
cresce exponencialmente com o comprimento da sequéncia. A questido é como buscar
uma estrutura neste espago de soluciao exponencial para escolher a melhor estrutura.
Quando a estrutura secunddria de apenas uma sequéncia de RNA precisa ser prevista,
apenas métodos iniciais podem ser usado. Se um conjunto de RNAs homdélogos
estiver disponivel, métodos comparativos podem prever a estrutura de consenso com

mais precisao.

s Comparacdo de estrutura secunddria: A comparagao de estrutura calcula a diferenca
entre duas estruturas. A medi¢do € feita calculando a diferenca de uma distancia
de edicao entre essas duas estruturas. A distancia de edi¢do depende de quantas
operacdes de edicao sdo necessdrias para transformar uma das estruturas em outra
considerando o custo de cada tipo de operacao de edicao. O calculo da distincia de
edicdo estd diretamente relacionada a forma como as estruturas sao representadas
e em que nivel de resolugdo a comparacio € realizada. Trés maneiras comuns de
representar estruturas sdo drvores, cadeias de colchetes e graficos genéricos. Os
niveis de resolucao variam de pares de bases para padrdes estruturais como hélices,

loops e multi-loops.

s Identificacdo de ncRNAs: A detec¢do computacional direcionados a familias de ncR-
NAs usam o maximo possivel de peculiaridades. A criacdo de programas mais gerais
que possam ser treinados para identificar caracteristicas de uma familia especifica ou
mesmo de uma unica sequéncia de entrada € um caminho possivel para identificacao
de familias. Ainda assim, é desejavel procurar novas familias de genes, o que torna

um problema para os programas de classificacdo geral de familias conhecidas.

2.1.4 snoRNAs

Os snoRNAs sao uma das mais antigas e numerosas familias de RNAs ndo codificantes
(ncRNAs), estdo amplamente presentes nos nucléolos das células eucaridticas e t€m um cumpri-
mento de 60-300 nt. A principal fun¢do dos snoRNAs € guiar a modificacdo de RNA ribossomal
(rRNA) especifica do local. Em contraste, sua organiza¢do gendmica e estratégias de expressao
sdo as mais variadas. Aparentemente, as unidades de codificacdo de snoRNA adotaram, no curso
da evolucdo, todas as formas possiveis de serem transcritas, proporcionando assim um paradigma
unico de flexibilidade de expressao génica. DIECI et al. (2009)
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Os snoRNAs sdo codificados principalmente por regides intronicas de genes codificadores
de proteinas e ndo codificadores de proteinas. Normalmente, podem ser classificados em
trés grupos: H/ACA box, C/D box e RNAs cajal pequenos (scaRNAs). Para HUANG et al.
(2022), os dois primeiros tipos de snoRNAs participam do processamento de rRNA adicionando
modifica¢des de 2-O-metilagdo e pseudouridilatacdo as moléculas de rRNA, respectivamente.
No entanto, um tipo de snoRNAs estio localizados em corpos de Cajal (CBs), eles sdo chamados
scaRNAs. Eles também seguem a classificacao C/D-H/ACA, mas alguns scaRNAs contém
estruturas C/D e H/ACA. C/D box snoRNAs se ligam a quatro proteinas essenciais — Nop1p,
Nop56p, Nop58p e Snul3p — para gerar pequenas ribonucleoproteinas nucleolar (snoRNPs).
Da mesma forma, os snoRNAs H/ACA box formam snoRNPs funcionais ligando-se a Cbf5p,
Garlp, Nhp2p e Nop10p.

O comprimento dos snoRNAs da C/D box eucaridtica geralmente varia de 70 a 120 nt,
como pode ser relatado pela figura 2.5. Esses snoRNAs contém duas sequéncias conservadas:
a C box e a D box. A C box consiste nos nucleotideos RUGAUGA, que estdo localizados na
extremidade 5° da molécula de snoRNA. Em contraste, a D box esta localizada na extremidade
3’ e consiste nos nucleotideos CUGA. Juntos, esses elementos dependem do par de bases para
dobrar em uma estrutura chamada kink-turn. Essa estrutura é reconhecida pelo Snul3p, que
entdo recruta Noplp (também chamado fibrilarina [FBL]), Nop58p e Nop56p para modificagcdo
de 2’-O-metilacdo DIECI et al. (2009).

Figura 2.5: Estrutura secunddria do SNORD33, que pertence ao grupo C/D box. Imagem extraida
de RFAM (2023a).

Os snoRNAs H/ACA box contém a regido chamada de bolsas de pseudouridilatacdo em
que ha residuos de uridina no substrato RNA isomerizados. H/ACA box snoRNPs se ligam a
Cbf5p, Nop10p, Garlp e Nhp2p, entre os quais Cbf5p atua como a proteina catalitica envolvida

na pseudouridilatacdo. Os snoRNAs eucaridticos H/ACA box contém duas sequéncias: a H box
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e a ACA box, localizadas abaixo do primeiro e segundo hairpin, respectivamente. DIECI et al.
(2009). Um exemplo de snoRNA H/ACA box € visto na imagem 2.6
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Figura 2.6: Estrutura secunddria do SNORA26, que pertence ao grupo H/ACA box. Imagem
extraida de RFAM (2023Db).

Os métodos de AM sio frequentemente usados na identificacao e classificacdo de dife-
rentes familias de ncRNAs como snoRNAs. Uma avaliagdo sistematica de AM nos snoRNAs
requer um aprendizado supervisionado em torno das classes para que possa extrair os atributos,
chamados de features, significativos do material genético. Essas features serdo consumidas por
um classificador, em outras palavras, por um algoritmo de AM, que serd responsavel de predizer,
avaliar e validar o modelo preditivo encontrado. Para aprofundar nesses métodos de identificagao
e classificacdo, é necessario compreender como funciona o workflow do Machine Learning (ML),
os algoritmos de aprendizado supervisionado, os algoritmos de extracdo de caracteristicas (em
priori os de género matemdtico), como funciona a avaliagdo métrica de um classificador e as

possiveis consequéncias que certas escolhas de parametro para o algoritmo podem induzir.

2.2 Machine learning

De acordo com ALLALI et al. (2021), o AM € um ramo da inteligéncia artificial que
envolve a autoaprendizagem do computador para executar tarefas. A selecdo de caracteristicas
no aprendizado de maquina t&€m um papel significativo no desempenho dos modelos de previsao.
E durante a selecdo que a redundéncia e ruidos sdo identificados, a remogio do sobre-ajuste é
aplicado, o que implica diretamente no aumento da velocidade de cdlculo. Esta etapa crucial é
capaz de definir as caracteristicas discriminantes do objeto de estudo analisado. Para entender
melhor, MITCHELL (1997) explica o funcionamento do AM sugerindo uma esquematizagao de

um programa de computador o qual aprende a partir de uma experiéncia E através de alguma
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classe de tarefas T e uma medida de desempenho P. Vale ressaltar que sua performance para
a tarefa T, medida em P, é aprimorada com a experiéncia E. Por exemplo, considerando a
aplicabilidade do objeto de estudo da tese, considere que um programa deve classificar uma
determinada sequéncia de cddigo genético e precisa classificd-lo como um RNA, portanto:

O problema pode ser traduzido para:

» Tarefa T Classificar o cédigo genético em DNA ou RNA

» Medida de desempenho P: Percentual de sequéncias de RNAs classificadas correta-
mente

= Experiéncia E: Um banco de dados de sequéncias conhecidas de DNAs e de sequén-
cias de RNAs

Dado um conjunto de dados, o algoritmo fard o treinamento a partir das caracteristicas
(features) predefinidas que descrevem o RNA. A hipétese inicial € que haja uma func¢do f que
consiga ser aplicdvel a um grupo X de codigo genético que o caracterize como um RNA. O
algoritmo nao retorna uma solugdo exata, logo, a correlagdo do resultado é baseado na margem de
erro da funcdo heurfstica. Todavia, a inten¢do do aprendizado de mdquina € que torne a miquina
consistente ao armazenar a "experiéncia”ou informacao advindas do banco de dados; quanto
mais caracteristicas estiver disponivel para definir o caso de estudo, melhor. A determinacao da
acurdcia € feita pelo valor resultante do F-score, em termos estatisticos, € a medida de precisdao
de um teste, portanto, a escolha do conjunto de dados bem como a preferéncia do algoritmo

impactam diretamente na sua eficicia HENNIG et al. (2021).
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Figura 2.7: Fluxo de trabalho do aprendizado de maquina. Imagem extraida de MITTAL (2017).

A figura 2.7 mostra um simples fluxo de trabalho do aprendizado de méquina, inclusive,
muito utilizado na minera¢@o de dados: na primeira etapa recebe o dado bruto e em seguida passa
para etapa de pré-processamento que filtrard os dados e os limpara deixando-o estruturado, em
sequéncia o algoritmo escolhido é executado e retornard o modelo candidado para o treinamento
em questao, a verificacdo do F-score € feito na fase seguinte e o "modelo de ouro", isto €, o grupo
classificado que obteve a maior acuricia € encontrado. HENNIG et al. (2021) O aprendizado

de mdaquina € dividido em trés grupos: aprendizado supervisionado, ndo supervisionado e
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reforcado. O aprendizado hibrido, por sua vez, combina ambos métodos: supervisionado e ndo
supervisionado.

No estudo de HENNIG et al. (2021), define-se que o aprendizado supervisionado mapeia
uma entrada para uma saida com base em um conjunto de dados conhecidos, a saida € uma
classe (no caso de classificagdo) ou um valor (em regressao linear). Na aprendizagem nado
supervisionada, os algoritmos construem modelos capazes de descrever os dados e as relagdes
encontradas sem o uso de rétulos, além de incluir a divisao de dados em grupos (no caso de
agrupamento) e resume a distribui¢do de dados em densidade estimativa. A aprendizagem por
refor¢o envolve acdes de aprendizagem em vez de classe, e a entrada é mapeada para acdes
com base no retorno, logo, € orientada a acdo, onde sdo mantidas as a¢cdes que conterem maior
recompensa. Para elucidar, as préximas se¢des abordardo alguns algoritmos de classificagdo
importantes como SVM, CNN e Explicit Decomposition with Neighborhoods (EDeN), Random

Forest para ilustrar alguns dos métodos disponiveis do aprendizado de maquina.

2.2.1 Etapas do Machine Learning

As etapas do Machine Learning podem ser divididas em 5 estagios segundo PANT
(2019):

1. Coleta de dados: A miquina de aprendizado inicialmente aprende com os dados que
sdo fornecidos a ela. A qualidade dos dados que alimenta a maquina determinard a
precisdo do modelo preditivo. Dados incorretos ou desatualizados terdo resultados
ou previsdes erradas que nao sao relevantes. Portanto, a primeira etapa no processo
de aprendizado de médquina € obter os dados auténticos para constru¢cdo do conjunto
positivo e negativo, podendo ser adquiridos de bancos de dados existentes ou de

repositorios online, desde que seja de fonte confidvel.

2. Pré-processamento de dados: Todos os dados do mundo real geralmente ndo estdo
bem estruturados, redundantes ou nao tem informacao descriciondria. Para explora-
los no modelo de aprendizado de maquina, € inevitdvel que haja uma preparacao,
limpeza, no intuito de que fique mais claro e objetivo. Essa etapa € crucial no fluxo
de trabalho do ML e também a que leva mais tempo. Os dados podem estar em
qualquer formato: CSV, XML, JSON, etc. Apds a conversdo para um formato padrao,
€ preciso limp4-los. Sendo assim, é fundamental checar se a quantidade de dados
para os conjuntos (positivo e negativo) estdo balanceados, se as sequéncias genéticas

detém tamanhos semelhantes, se o genoma contém apenas bases nitrogenadas, e etc.

3. Extracao de caracteristica: A extracdo de caracteristicas refere-se ao processo de
transformacdo de dados brutos em dados numéricos que podem ser processados,
preservando as informagdes no conjunto de dados original. E uma etapa primordial,

pois o algoritmo de aprendizado de mdquina produz melhores resultados com valores
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continuos e discretos do que diretamente com dados brutos. Escolher um algoritmo
de extragdo capaz de transcrever os atributos de cada sequéncia genética é decisivo
acerca o resultado da predicdo: a eficicia da predi¢do pode variar conforme a técnica

escolhida de extragdo.

4. Treinamento: A proxima etapa no fluxo de trabalho de aprendizado de maquina
¢ treinar o modelo. Um algoritmo de ML € empregado no conjunto de dados de
treinamento com o objetivo de aprender e prever certos "comportamentos'baseado
nos valores reais advindos da extracdo. Esses algoritmos podem se enquadrar em trés
grandes categorias: bindrio, classificacio e regressdo. Neste trabalho serd usado o

algoritmo de classificagao.

5. Testes: Depois que o modelo € treinado exaustivamente, o préximo passo € testa-lo
e valida-lo para garantir que eficaz. Usando o conjunto de dados de teste obtido
na etapa 3, € feito a verificagdo da precisdo do modelo obtido. O modelo pode ser

treinado, alterado e aprimorado vérias vezes até que os resultados sejam satisfatérios.

Todo o passo-a-passo pode ser descrito pela figura 2.8.

DADOS MODELO
PREPARADOS ESCOLHIDOD

Figura 2.8: Fluxo de trabalho do ML. Imagem extraida de SCHADE (2018).

222 SVM

As Madquinas de Vetores de Suporte (do inglés, Support Vector Machines - SVMs) € um
método nao paramétrico que nao € limitado pelo tamanho do conjunto de dados de treinamento.
Essencialmente, o Mdquina de vetores de suporte (SVM) gera modelos usados para classificacido
e regressdo CHEN et al. (2015). Em ambos os casos, se 0 SVM nio for capaz de criar os vetores
de suporte, ele pode construir hiperplanos em uma dimensao alta no espacgo euclidiano para que
ele selecione aqueles com maior margem, relacionados aos dados de treinamento VIEIRA et al.
(2017). Nessas circunstancias, o0 modelo SVM tenta encontrar uma reta para distinguir os grupos
da entrada do conjunto de dados, como ilustrado pela figura 2.9, excluso os casos em que as
margens nao podem ser criadas quando métodos simples de separagdo linear sdo usados para

dados ndo-lineares.
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Com a finalidade de resolver este obstdculo, 0 SVM usa fun¢des do kernel para aumentar
a dimensdo do espago, de modo que o conjunto de dados possa ser linearmente separdavel em
dimensdes mais altas, como na figura 2.10, o qual o algoritmo divide o plano bidimensional de

forma que separe os vetores de suporte em ambas extremidades da reta.
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Figura 2.10: Dados separdveis ndo lineares em baixa dimensao, mapeados para uma dimenséo
mais alta; adaptado por VIEIRA et al. (2017).

Uma nog¢do que € central para a construgdo do algoritmo de aprendizado do vetor de
suporte € o kernel do produto interno entre um "vetor de suporte"xi € o vetor x extraido do
espaco de entrada. Os vetores de suporte consistem em um pequeno subconjunto dos dados de

treinamento extraidos pelo algoritmo

2.2.3 CNN

O trabalho de Hubel e Wiesel em 1962 sobre a descoberta de atividades elétricas de
neurdnios em gatos foi pioneira para o desenvolvimento do método de AM baseada em multica-
madas de neurdnios, chamada de rede convolucional neural (CNN) WURTZ (2009).Uma rede
convolucional é um perceptron multicamada projetado especificamente para reconhecer formas
bidimensionais com um alto grau de invariancia a tradu¢do, dimensionamento e distorcao. Esta
tarefa € aprendida de forma supervisionada por meio da rede cuja estrutura inclui as seguintes
formas de restricdes VIEIRA et al. (2017):
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1. Extragdo de caracteristicas - Cada neurdnio recebe suas entradas sindpticas de um
campo receptivo local na camada anterior, forcando-o a extrair caracteristicas locais.
Uma vez que um recurso foi extraido, sua localizac@o exata torna-se menos impor-
tante, desde que sua posi¢do em relagdo a outras caracteristicas seja aproximadamente

preservada.

2. Mapeamento de extragdes - Cada camada computacional da rede € composta de
varios mapas de caracteristicas, com cada mapa de caracteristicas na forma de um
plano dentro do qual os neur6nios individuais sdo restringidos a compartilhar o
mesmo conjunto de pesos sindpticos. Esta segunda forma de restri¢do estrutural tem
efeitos benéficos como a invariancia de deslocamento e redu¢do da quantidade de

parametros livres recebidos pelos perceptrons.

3. Subamostragem - Cada camada convolucional é seguida por uma camada compu-
tacional que realiza média local e subamostragem, reduzindo a resolu¢ao do mapa
de caracteristicas. Esta operacao tem o efeito de reduzir a sensibilidade da saida do

mapa de caracteristicas para deslocamentos e outras formas de distor¢do.

A preparacao da rede convolucional neural pode ser expressa na imagem 2.11. Desde o
estagio da entrada dos dados até a dltima etapa da rede, a simplificacdo da informagdo anterior
¢ executada em cada camada (pooling) e sua utilidade € diminuir a quantidade de recursos

agrupados ajudando a reduzir o niimero de pardmetros necessdrios nas camadas posteriores.

Pooling

Convolutions Convolutions

Fully
connected

28x28x1 : 14x14x16 7 5x 7x7x32

Convolutions Pooling .
i 256

* Classifier CutpPut
10

Input 1st stage ! 2nd stage

Figura 2.11: Representagdo da rede convolucional neural no processamento de imagens (I)
entrada de dados, (I) primeiro estdgio, (III) segundo estagio, (IV) classificador de 256 pixels, (V)
saida com 10 pixels totalmente conectada; Imagem extraida de MALADKAR (2018).

A esséncia da rede neural convolucional é baseada na retropropagacao que consiste na
atualizac@o continua dos pesos para que os neurdnios com a maior taxa de erro/perca sejam
minimizados garantindo a consisténcia do modelo e a acuracia do método. A retropropagacao
funciona da seguinte forma: ao adentrarmos ao mapeamento de extracdes, € necessario atualizar o
peso de cada sindptico (ligagc@o entre dois neur6nios) de forma que aplique em todos os neurdnios

das camadas anteriores e para que isso seja implementado, € necessdrio a funcdo de perca e a de
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hipétese, elas guiardo o modelo pela a rede inteira até que chegamos a uma camada final que
seja utilizdvel AL-MASRI (2019).

Portanto, conforme o mapeamento de extracdes avanca, os pesos tendem a diminuir pois
sdo célculos a partir da derivada parcial das fun¢des. Consequentemente, o dltimo né da rede
armazenard o total de perda do modelo que serd usado para a avaliagdo do resultado, percebe-se,
entdo, que a rede convolucional vai aprendendo a classificar o modelo por treinamento extraindo

suas proprias caracteristicas esporadicamente.

2.2.4 EDeN

Explicit Decomposition with Neighborhoods (EDeN) € um kernel decomposicional de
grafos baseado no Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) que produz um
subgrafo da estrutura secundaria do snoRNAs e produz um conjunto explicito de features usado
para algoritmos de aprendizagem de méaquina supervisionados, ndo-supervisionados ou hibridos
de maneira escalavel.

A decomposi¢do de uma sequéncia gendmica em partes de objeto pretende conceber
um kernel local vélido entre as subpartes para que seja obtido uma funcio de similaridade
capaz de decompor exponencialmente se existir um método que enumere os kernels em tempo
polinomial recorrendo a programacio dinimica para tal ato. A medida que a dimenséo do
espaco de caracteristicas torna-se maior, hd uma probabilidade de que uma fracdao das dimensdes
nao serdo correlacionadas com a funcao de similaridade. Como consequéncia, mesmo usando
algoritmos de classificacdo com margem alta, tornam-se obsoletos para determinar uma boa
generalizacdo do modelo. COSTA; GRAVE (2010). A execu¢do do EDeN ¢ exemplificado pela

imagem 2.12.
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Figura 2.12: Codificacdo da estrutura secundaria de RNA e as features do kernel do grafo;
Imagem extraida de HEYNE et al. (2012).

Para entender melhor como funciona a tradug¢do da sequéncia para um grafo, o passo-a-

passo da codificacdo da estrutura secundaria é: (A) A codificacio do grafo preserva a informagao
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do nucleotideo (rétulos do vértice) e os pares de bases (rétulos da borda), aqui representados
com cores diferentes. (B) Vértices adicionais sdo inseridos para induzir features relacionados
ao empilhamento quadruplo de pares de base (vértices finos de cor cinza no centro de cada
empilhamento de pares). Na parte da direita exemplo de features induzidas pelo kernel do grafo
NSPDK para um par de vértices u,v na distancia 3 com raio 0,1,2. Os grafos de vizinhanga sao
encerrados em trilhas tracejadas.

Em uma conotagcdo matemaética, proposto por HEYNE et al. (2012), dado um grafo
G = (V,E),em que V é o conjunto de vértices e o E é o conjunto de arestas. Sendo a distancia
de dois vértices u,v denotada por D(u,v) do menor caminho entre eles e o raio r da regido do
subgrafo induzido € o conjunto de vértices a uma distancia d menor ou igual a  de v. Considere
que N, (G) denota o subgrafo de vizinhanga, ou seja, o subgrafo de G enraizado em v induzido
pelo conjunto de vértices. A relagdo de pares de vizinhanga R, ; € definida como valida quando
a distancia entre as raizes de dois subgrafos de vizinhanga de raio r é exatamente igual a d.
O kernel de decomposigdo, portanto, k4 na relagdo R, ; em um NSPDK pode ser definido da

seguinte forma:

k

r* d*
K(G.G)=Y Y ka(G.G)
r d

Isto significa que o NSPDK decompde o grafo em pares de subgrafos vizinhos limitando
a soma de k, 4 kernels a cada iteragdo para todos os valores crescentes do pardmetro de raio r e

distancia d até um valor maximo dado r* e d* respectivamente.

2.2.5 Random Forest

O algoritmo Random Forest de AM € um conceito baseado em uma estrutura construida
em arvores a partir da particdo recursiva do conjunto de dados de acordo com um critério
pré-estabelecido até que uma condi¢do de parada seja atendida.

As arvores de decisdo podem ser designadas para tarefas de classificacio categéricas
e/ou continuas usando uma fung¢do de otimizagdo especifica para divisdo dos nds, como a funcao
introduzida por Shannon, em 1948, que ficou conhecida por entropia de Shannon: uma férmula
que calcula a incerteza de ocorréncia de determinado evento, dada informagdo parcial sobre o
sistema TORRES-GARCIA et al. (2022).

E=—

p(xi)loga(p(xi))

=

i=1

onde N € o nimero de classes distintas e p; é a probabilidade de ocorréncia de cada
classe. Este valor € maximizado para obter o mdximo de informagdes em cada divisdo da arvore
de decisao.

Ao construir cada sub-arvore em cada divisdo, apenas um conjunto determinado de

caracteristicas sio selecionadas e consideradas como candidatas a divisdo. Conforme a arvore de
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decisdo vai se expandindo e criando sub-arvores, mais dificil € extrair a informacao interpretavel
de cada n6. Na figura 2.13, as arvores de decisdo recebem a feature e definem um célculo

booleano para identificar qual né vai receber a entrada desejada.
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Figura 2.13: Estrutura simpldria de uma Random Forest; Imagem extraida de ZHANG (2021).

A arvore de decisdo é formalmente expressa com base nesta fungao:

J
T(x)= ZIWH(XERJ)
j:

O numero de nés-folha J é geralmente tratado como um hiperparametro. E a familia
definida {R j}le ¢ um particionamento do dominio de x. Cada conjunto R; € parametrizado com

6, . A funcdo indicadora 1(x € R;) é a fungdo caracteristica do conjunto R; definido como:

1(xeRy) = 1 if (x € R))
0 otherwise.

Basicamente, o algoritmo Random forest soma todas as arvores de decisao com alguns
fatores aleatérios. As drvores ndo apenas extraem algumas amostras do conjunto de treinamento,
mas também fazem parte das amostras de features durante a indu¢do de cada sub-drvore.

O limite do nimero de caracteristicas (parametro max_features) bem como a quantidade
de sub-arvores na arvore de decisdo (parametro max_leaf _nodes) sdo alguns dos hiper-parametros
do Random Forest. Um valor baixo no pardmetro max_features aumenta a chance de selegao de
caracteristicas com baixa relevancia, o que consequentemente piora o desempenho da predi¢cdo
nos casos em que seriam mascaradas as caracteristicas com grandes efeitos, em oposi¢do, um
alto valor de max_features aumenta o risco de ter apenas candidatos "ndo-informativos", isto &,
com informacdes ndo interpretaveis. COURONNE et al. (2018)

Uma desvantagem das arvores de decis@o € que elas sdo propensas a superajuste, o que
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significa que o modelo se adapta rapidamente ao conjunto de dados, porém, se torna ineficaz na
predicdo de novos resultados. O superajuste das arvores de decisdo levard a uma baixa precisao
preditiva no geral impactando diretamente na acuricia do algoritmo em classificar corretamente
as classes do modelo. SCHONLAU; ZOU (2020)

A Secdo 2.4 discutird o que € sobreajuste e as consequéncias que pode proporcionar para

o classificador ao longo do processo de aprendizagem de maquina.

2.3 Extracao de Caracteristicas

A extragdo de features é uma parte do processo de reducao de dimensionalidade, no qual
um conjunto inicial de dados brutos € dividido e reduzido a grupos mais gerencidveis para que
diminua a complexidade da fase de processamento. A caracteristica mais importante desses
grandes conjuntos de dados € que eles tém um grande numero de varidveis. Essas varidveis
requerem muitos recursos de computagdo para serem processadas, portanto, a extracio de
features ajuda a obter o melhor recurso desses conjuntos de big data, selecionando e combinando
variaveis, reduzindo efetivamente a quantidade de dados. Essas features sdo transcritas em
valores numéricos capazes de descrever o conjunto de dados real com precisdo e originalidade
CHATTERIJEE (2022).

Os dados sdo representados por um nimero fixo de caracteristicas que podem ser bindrio,
categoérico ou continuo. Encontrar uma boa representacao de dados depende estritamente do
dominio e das relacdes com as medi¢des disponiveis. Por exemplo, em um diagnéstico médico,
as caracteristicas podem ser sintomas, ou seja, um conjunto de varidveis que categorizam o
estado de saude de um paciente (febre, nivel de glicose, nivel da pressao, etc.).

Ha muitas técnicas de extracao de feature, entretanto, o foco deste trabalho € analisar os
procedimentos que usam conceitos matematicos para extrair os atributos (features) do conjunto
de dados. Dessarte, as proximas segdes ficardo responsaveis de explicar o funcionamento de 3

algoritmos de extracdo: Transformagao Numérica de Fourier, Entropia e Redes Complexas.

2.3.1 Transformacao Numérica de Fourier (Real e Z-Curve)

O teorema da série de Fourier diz respeito a propriedade de sinais periédicos, indepen-
dente da forma que estd expresso o sinal, ele pode ser representado por uma soma de sinusoéides,
em outros termos, uma série de sinusdides que sdo iguais ou multiplos da frequéncia do sinal.
Qualquer sinal peridédico pode ser representado de forma equivalente por sinuséides que estao
harmonicamente relacionados com a frequéncia base do sinal. A conversdo de um sinal em seu
equivalente senoidal € conhecida como transformacao de Fourier (FT). A andlise da série de
Fourier e a transformada de Fourier ndo sdo os tnicos caminhos para definir as caracteristicas
de uma frequéncia ou espectro de um sinal, mas conduzem a um visdo mais geral sobre sinais
SEMMLOW (2012).
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Para colocar o teorema da série de Fourier em termos matemadticos, a forma geral da

série €:

> t t
T(t) = %M;mncos(%) —|—sin(%)]

em que os coeficiente ag, a,, € b, sdo nimeros que variam de acordo com a fun¢do que
serd representada, de periodo fundamental 2L. Esses coeficientes sdo as amplitudes de cada onda
em série, que sdo calculadas com as seguintes formulas:

A maioria das andlises de Fourier é aplicada a dados discretos. Os dados discretos
diferem dos dados continuos e periddicos de duas maneiras fundamentais: eles sdo amostrados
por tempo e amplitude e sdo finito. Os dados finitos podem ser considerados como um sinal
aperiédico ou como um periodo de um sinal periddico.

Para extrair features com base em uma abordagem de Fourier, aplicamos a transformada
discreta de Fourier (DFT), amplamente utilizada para imagem digital e processamento de sinal
(GSP), que pode revelar periodicidades ocultas ap6s a transformagao de dados no dominio do
tempo em frequéncia espaco de dominio. Uma versao discreta das equagdes de andlise de Fourier

¢ a Transformacao de Fourier Discreta (DFT) de um sinal, que pode ser definido pela equacao:

XK =Y xlnle” ¥

n=0

Onde N € o comprimento do sinal (nimero harmdnico) e a frequéncia do sinal definida
por k. Se os dados s@o realmente periddicos, esta equacao estéd realizando uma anélise discreta
da série de Fourier

A transformacio de Fourier tem sido amplamente estudado em bioinformética, principal-
mente para andlise de periodicidades e elementos repetitivos em sequéncias de DNA e estruturas
de proteinas YIN; YAU (2005). Para calcular a DFT, usa-se a transformada rapida de Fourier
(FFT), que é um método altamente eficiente para calcular a DFT de uma série temporal. No en-
tanto, para usar técnicas GSP, uma representacao numérica deve ser usada para a transformagao
ou mapeamento de dados gendmicos.

De acordo com MENDIZABAL-RUIZ et al. (2017a), essas representacdes podem ser
divididas em trés categorias: mapeamento de valor tinico, mapeamento de sequéncia multidi-
mensional e mapeamento de sequéncia cumulativa. Apesar disso, neste trabalho serd estudado

apenas duas representagdes numéricas: Real e Z-curve.

s Representacdo Real: Este mapeamento aplica valores decimais negativos para as
purinas (A, G) e valores decimais positivos para as pirimidinas (C, T). Por exemplo,
digamos que s = (G, A, G, A, G, T, G, A, C, C, A), entdo, r == (-0.5, -1.5, -0.5, -1.5,
-0.5,1.5,-0.5,-1.5,0.5, 0.5, -1.5). A equacdo deste método é:
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(

-0.5, s[n] =G
-1.5, s[n]=A
0.5, s[n] =C
\ 1.5, s[n]=T

N-1 ot
R =Y rinle %" Pk = [RK][Zk=0,1,...,N—1
n=0

= Representacdo Z-curve: O esquema da curva Z € uma curva tridimensional apresen-
tada por MENDIZABAL-RUIZ et al. (2017b) para codificar sequéncias de DNA com
mais semanticas biolégicas. Uma dada sequéncia s[n] de comprimento N, levando
em consideracdo o n-ésimo elemento da sequéncia (n =1, 2, ... , N). Denotamos os
nimeros de ocorréncia cumulativos como A, C, e T, para cada base nitrogenada
A, C, G e T, como o numero de ocorréncias na sequéncia, variando de {1, ..., n}.
Este método, em sua esséncia, diminui o nimero de indica¢cdes de sequéncias de 4
(representacdo numérica de Voss) para 3 (Z-curve) de forma simétrica para todos os 4

componentes, logo:

An+Cy+Go+T,=n
Onde a curva Z consiste em uma série de nds P1, P2, ... , PN, cujas coordenadas x[n],
y[n] e z[n] (n=1, 2, ... , N) s@o exclusivamente determinadas pela "transformada-Z",
mostrada na equacdo abaixo:
x[n] = (An + Gn) - (Cn + 1)
P[n] = < y[n] = (A, +C,) — (G, +Tp,) x[n],y[n],z[n] € [-n,n], n=1,2,.,N
z[n] = (Ap+T,) — (Ch+Gy)

2.3.2 Entropia (Shannon e Tsallis)

A entropia, como medida de conteddo e complexidade da informacao, foi introduzido pela
primeira vez por Shannon (1948), desde entdo a entropia assumiu muitas formas, nomeadamente
topoldgicas e métricas. Essas entropias foram definidas com o propésito de classificar um sistema
através de alguma medida de complexidade ou simplicidade. Essas defini¢des de entropia t€ém
sido aplicadas a sequéncias de DNA com amplo éxito KOSLICKI (2011).

Uma abordagem algoritmica e matematica para andlise de codigo de DNA usando

entropia € descrita como:
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k 1 1

c c c 2441 ck
P.(s) = = 1 4 i (2.8)
) = T s NN R U N2+ T Nk 1) 8

Nesse método, cada sequéncia € mapeada na frequéncia das bases vizinhas k, gerando
informagdes estatisticas, e o k-mer € denotado por P;. A equagdo € aplicada para cada sequéncia
com frequénciade k=1, 2, ..., 24, onde cf ¢ o nimero de ocorréncias de substrings com tamanho
k em uma sequéncia (s) com tamanho N, o qual o indexador i € 1,2, Y LSy representa
a substring analisada. Como s € A,C,G,T, dado qualquer inteiro positivo k, hd 4% possiveis
diferentes valores para k-mers. Basicamente, sdo adotados histogramas com bins curtos, como
[A, C, G, T], que ocorrem para k = 1, até histogramas com bins de contagem de sequéncia,
como [GGGGGGGGQG, ... ,AAAAAAAAAA], esse resultado para k = 9. Onde, depois de
contar o valor absoluto de frequéncias de cada k, geramos frequéncias relativas (equagdo 2.8) e,
em seguida, a entropia de Shannon e Tsallis é aplicada para gerar as features. BONIDIA et al.
(2021a)

A entropia de Shannon é um quantificador estatistico amplamente utilizado para a
caracterizacao de processos complexos. Ele € capaz de detectar aspectos de ndo linearidade
em séries de modelos, contribuindo para uma explicacdo mais confidvel sobre a dindmica nao
linear de diferentes pontos de anélise, 0 que, por sua vez, aumenta a compreensao da natureza de
sistemas complexos caracterizados por complexidade e nao equilibrio.

Entropia refere-se a uma medida de imprecisdo e aleatoriedade em um sistema. Se
assumirmos que todos os dados disponiveis pertencem a uma classe, ndo serd dificil prever
a classe de um novo dado. A entropia é 0 neste caso. Sendo um valor entre 0 e 1, quando
todas as probabilidades sdo iguais, a entropia assume o seu valor maximo. Dependendo das
variaveis, a definicdo de uma classe com baixa probabilidade é baseada em quao baixa € a
probabilidade desse incidente. E isso pode ocorrer quando passar a existir uma classe com
pequena probabilidade de realizacdo, o que serd aceitdvel com correlacio reversa devido a tal
probabilidade. A imprecisdo que ocorre quando um evento E ocorre com p probabilidade €
denotada por S(p). Se a probabilidade de uma classe ocorrer € 1, a representacdo é S(1) = 0.
De acordo com Shannon, as probabilidades de uma classe ocorrer sdo py, p2, p3, ..., Pn, @ saida
examina a imprecisao por meio da medicao (H). KARACA; MOONIS (2022)

A entropia de Shannon pode ser denotada como:

n
H(x) =) pilogapi

i=1
Aqui, H(x) é definida como a entropia da varidvel aleatéria X. A vagueza média associada
a X € interpretada como a vagueza de X.
Além da entropia de Shannon, hd também o conceito de entropia de Tsallis, de Constan-

tino Tsallis, que em 1988 reformulou a Entropia de Boltzmann-Gibs de forma generalizada com o
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uso de uma quantidade normalmente dimensionada em multifractais. As estruturas multifractais
tém sua importancia em muitas dreas ativas de pesquisa (por exemplo, sistemas dinAmicos ndo
lineares, crescimento de modelos, estruturas comensuraveis/incomensuraveis). Tsallis postulou

entdo a entropia como:
W ooq
1-Y.2,p;

q—1
Esta entropia ficou conhecida como Entropia de Tsallis. Nela, a quantidade que é

Sy =k 2.10

normalmente escalada é p?, onde p; € a probabilidade associada a um evento, g € N representa a
generaliza¢do da equacdo e W € N € o nimero total de possiveis configuracdes microscdpias.
Em um ambito voltado a extrac@o de caracteristicas, ambas tém notoriedade: a entropia
de Shannon quantifica a quantidade de informagdo de uma varidvel para que consiga chegar a um
valor tnico que mensure a informacdo contida em diferentes periodos de observacio (por exem-
plo, o k-mer mencionado na defini¢ao de entropia de Shannon). No entanto, no artigo BONIDIA
et al. (2021a), é relevante explorar a forma generalisada da entropia de Shannon para ter mais
opg¢Oes na extracdo. Deste modo, para uma variavel aleatoria discreta F tomando valores em
{fI0], f[1], f[2],..., fIN — 1]} com probabilidades {p[0], p[1], p[2], ..., [N — 1]}, representado
por P(F = f|n]) = p[n]. A entropia de Shannon e Tsallis associada com essa varidvel é dada

pelas expressoes a seguir:

N—-1

Hykl ==Y piln]logopiln]sk=1,2,...,24
n=0
1 N—1
H[k] = —1(1 =Y pn)®)k=1,2,...,24 2.12
q— n=0

2.3.3 Redes Complexas

O estudo de redes complexas € inspirado em estudos de andlise empirica em redes reais.
De fato, redes complexas permitem compreender varios sistemas reais, desde redes tecnoldgicas
para redes bioldgicas. Por exemplo, nds precisamos de um conjunto de neurdnios conectados por
sinapses para garantir nossa capacidade de ler este texto; nosso corpo € governado por interacoes
entre milhares de células; infraestruturas de comunica¢do como a Internet sdo formadas por
roteadores e cabos de fibras dpticas e a sociedade € composta por pessoas conectadas por relagdes
sociais, colaboracdes entre familiares e/ou profissionais CALDARELLI (2007).

Para CALDARELLI (2007), esses sistemas sdo chamados de sistemas complexos porque
ndo é possivel prever seu comportamento coletivo a partir de componentes individuais, mas
entender a correlagdo matemaética desses sistemas nos torna capazes de prevé-los e possivelmente
controld-los. Em geral, um modelo de rede produz grafos com propriedades semelhante ao
sistema real. No entanto, a vantagem de usar um modelo € reduzir a complexidade do mundo

real a um nivel que pode ser tratado de forma mais prética. Portanto, as redes sdo consideradas
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um poderoso meio de representagdo padroes de conexdes entre partes de sistemas, como Internet,
rede elétrica, teias alimentares e redes sociais.

Do ponto de vista matematico, podemos representar uma rede por meio de uma matriz de
adjacéncia A. Um gréfico de N vértices tem uma matriz de adjacéncia N x N. As arestas podem

ser representada pelos elementos A;; desta matriz tal que:

1, se os vértices 1 e j estdo conectados

0, caso contrario

Figura 2.14: Uma representagc@o em rede das interagdes sociais de um grupo que pertence ao
mesmo clube de karaté; De acordo com MATA (2020), essa rede social foi estudada por
ZACHARY (1977) de 1971 a 1972 e capta os links de 34 sécios que se integraram entre si fora do
clube

Geralmente, as matrizes adjacentes no mundo real sdo assimétricas, ou seja, A;; # A,
porém na imagem 2.15 o grafo € simétrico. Se considerarmos redes com peso, entdo, cada
aresta tera um diferente peso w;;. O peso pode representar o fluxo de pessoas em um voo em
um transporte ou a corrente que flui através de uma linha de transmissao em uma rede elétrica.
Nestes casos, os elementos da matriz de adjacéncia sdo melhor descritos como A;; = w;j, €,
geralmente, 0 < w;; < 1.

Uma informagao relevante que pode ser obtida na matriz de adjacéncia € o grau k; de um
vértice i definido como o nimero de arestas ligadas ao vértice i, ou seja, o nimero de vizinhos
mais proximos do vértice i. O grau dos vértices pode ser escrito por meio da matriz de adjacéncia

como:

N
ki=Y Aij 213
=1

Uma questdo central na estrutura de um grafo € a conectividade de seus vértices, ou
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seja, a possibilidade de estabelecer um caminho entre quaisquer dois nds. Isso é importante, por
exemplo, quando temos um impulso nervoso se propagando em um rede neural. CALDARELLI
(2007)

Normalmente, o nimero de vizinhos em uma rede complexa a uma distancia pode ser
aproximado por (k)! , considerando que cada vértice tem grau igual ao grau médio de a rede (k)
e nao ha loop. Um loop ou um ciclo € um caminho fechado P;; (i = j) no qual todos os nés e
todas as arestas sdo distintas.

Em meio a tantas propriedades de grafos, basta entender estas que foram discutidas para
entender de maneira simpldria o funcionamento de uma rede complexa na area de ML no que
diz respeito a extragdo de features.

No contexto de extracdo de caracteristicas, as sequéncias sao mapeadas para a frequéncia
de vizinhos com base nitrogenada k. Este mapeamento é convertido em um grafo nio direcionado
representado por uma matriz de adjacéncia, na qual € aplicado um esquema de threshold (limite)
para extracdo de features, gerando assim um vetor de features adaptado. Um grafo G = {V,E} é
estruturado por um conjunto V de vértices (ou nds) conectados por um conjunto E de arestas (ou
links) e cada aresta € conectada a dois vértices.

Nesta circunstancia, o grafo € nao direcionado, o que implica que a matriz de adjacéncia
A € simétrica, entdo os elementos a;; = a; para qualquerie j. E aplicado entiio o esquema de
threshold (limite) e para cada threshold (t), um novo subgrafo € gerado do grafo original. Este
procedimento se propde a capturar as adjacéncias em diferentes frequéncias para que varias
medidas de caracterizacdo da rede (grafo e subgrafos), entre eles: intermediacdo, assortatividade,
grau médio, comprimento médio do caminho, grau minimo, grau méximo, desvio padrao de
grau, frequéncia de motifs e coeficiente de agrupamento sejam capturadas. Todos esses fatores

serdo usados como os atributos do conjunto (features). BONIDIA et al. (2021a)

.
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Figura 2.15: Fluxo de uma rede complexa. (1) Cada sequéncia ¢ mapeada em cada frequencia de
vizinhos de base k = 3; (2) O mapeamento é convertido em um grafo nio direcionado representado
por uma matriz de adjacéncia; (3) A extracdo de features é executada usando o esquema de
threshold; (4) As features sdo geradas. A imagem foi extraida de BONIDIA et al. (2021a).
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2.4 Overfitting (Sobre-ajuste)

Por ser um problema bem comum na area de Machine Learning, o sobreajuste de dados
ocorre quando o modelo se adapta extremamente bem ao conjunto de treinamento, generalizando
o modelo a partir dos dados observados e ndo-observados, porém se adequa mal ao conjunto de
testes. Modelos superajustados tendem a memorizar a entrada baseado em um bias, incluindo
ruido inevitavel no conjunto de treinamento, em vez de aprender as caracteristicas relevantes

especificas de cada entrada.

O overfitting geralmente ocorre quando o modelo é muito complexo e pode ser identifi-
cado a partir destas duas caracteristicas:

= O modelo tenta memorizar os dados de treinamento em vez de aprender padroes
essenciais dos dados.

= O modelo tem um bom desempenho apenas nos dados de treinamento e um desempe-
nho ruim em novos dados nao vistos.

De acordo com PRAMODITHA (2022), uma maneira eficaz de reconhecer se um modelo
estd superajustado € tracar a curva de aprendizado que ird apontar o overfitting nos modelos de
aprendizado profundo. A curva de aprendizado € um gréifico bidimensional que descreve em
porcentagem a taxa de melhoria de um certo modelo. Em outras palavras, ela pontua o modelo
de treino e a sua validagdo em relagdo a um ndmero de lotes ou picos, chamado de epoch.

A curva indica que o modelo esta superajustado caso satisfaca duas condigdes:

= Se houver uma lacuna clara entre as pontuagdes de treinamento e validagao.

» Quando o erro de validacdo (loss) comeca a aumentar em algum ponto enquanto
o erro de treinamento (perda) ainda diminui. No caso da precisdo, a precisao da

validacdo comeca a diminuir em algum ponto enquanto a precisiao do treinamento
ainda aumenta.

Como ilustragdo, a figura 2.16 menciona essas duas condigdes.
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Figura 2.16: Curva de aprendizado; Imagem extraida de PRAMODITHA (2022).
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Para detectar overfitting em métodos de aprendizado de maquina gerais como arvores de
decisdo, Random Forest e até mesmo K-Nearest Neightbors, ha outro grafico chamado de curva
de validacao.

A curva de validacdo representa a influéncia de um tnico hiperparametro no conjunto de
treinamento e validacdo. Para isso, é necessdrio identificar o hiperpardmetro mais importante
do modelo e tracar a influéncia de seus valores usando a curva de validacdo. Por exemplo, na
figura 2.17, o algoritmo Random Forest com o hiperparametro max_depth, que representa a

profundidade da arvore de decisdo, pode ser usado como parametro de verificacio de influéncia:

Validation Curve for RandomForestClassifier

100 - —4— Training Score
Cross Validation Score

056

score

054

02
050

2 4 & 8 10
max_depth

Figura 2.17: Curva de validagdo; Imagem extraida de PRAMODITHA (2022).

O eixo x representa os valores do hiperpardmetro fornecido, enquanto o eixo y representa
as pontuacdes de treinamento e validagdo em porcentagem. Neste grafico em questdo, apds o
max_depth ser maior que 6, 0 modelo comeca a sobreajustar os dados de treinamento. Em outras
palavras, a precisdo da valida¢do comeca a diminuir em max_depth=6 enquanto a precisdao do
treinamento ainda aumenta.

H4 também como verificar a acurécia da fase de treinamento e da validagdo pela abor-
dagem da matriz de confusdo, observando os valores de cada quadrante. A ideia é que se o
conjunto de treinamento tiver uma acurdcia muito alta em comparagdo com o conjunto de testes,
possivelmente € um indicador que o modelo ndo se performou bem ao predizer dados nao-vistos
e portanto, ocorreu um sobreajuste.

Para lidar com o overfitting, PRAMODITHA (2022) cita alguns métodos importantes

que previnem e atacam diretamente nesta problematica:

1. Reducao de dimensao: A reducdo do nimero de features nos dados é chamada de
reducdo de dimensionalidade. Devemos manter o0 maximo possivel de variacao nos

dados originais. Caso contrario, perdemos informacdes uteis nos dados.
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2. Selecao de features: A selecdo de features pode ser considerado como um método
de redu¢do de dimensionalidade, pois remove recursos redundantes (desnecessarios)
do conjunto de dados. Isso reduz o nimero de features e, consequentemente, reduz a

dimensdo dos dados.

3. Parada antecipada: Na parada antecipada, o processo de treinamento é parado
intencionalmente antes que o modelo comece a se sobreajustar, observando a curva

de aprendizado ou a curva de validacao.

4. Validacao Cruzada k-fold: Na validacdo cruzada k-fold, o conjunto de dados com-
pleto é dividido em diferentes partes iguais, dependendo do valor de k (geralmente 5
ou 10). Cada parte contém diferentes tipos de instancias (pontos de dados) e para

cada pedaco ¢é feito uma avaliagdo de métrica.

5. Limitacao de conjunto: Um ensemble (grupo) € uma colecdo de vérias arvores
de decisdo criadas a partir de subconjuntos dos dados e features de treinamento.
Por exemplo, uma Random Forest é um ensemble que contém um grupo de arvores
de decisio nio correlacionadas, e devido a essa caracteristica a aleatoriedade extra
ocorre. Além disso, o resultado final é calculado pela média dos resultados de cada
arvore ndo correlacionada. Assim, a Random Forest produz resultados mais precisos

e estdveis do que uma tnica arvore de decisao.

6. Pre-prunning: Por padrdo, uma drvore de decisdo € desenvolvida até o mdximo de sua
profundidade, e caso seja atingido o seu limite, ocorrerd o overfitting dos seus dados.
Nas drvores de decisdo, o pré-prunning € o processo de controle do crescimento da
arvore. O pré-prunning aplica uma regra de parada antecipada que interrompe o
crescimento de uma arvore de decisdo previamente, ficando com menos ramificacoes
do que o esperado. Para que seja aplicado esta técnica, os hiperpardmetros max_depth,

min_samples_leaf, min_samples_split sdo limitados.

7. Pés-pruninng: O pos-prunning € o processo de remog¢ao de partes da arvore apds
a arvore ter crescido completamente.Cost complexity pruning (ccp_alpha) é um
hiperparametro deste método que aumenta o nimero de nés reduzindo a profundidade

da arvore. Logo, valores maiores de ccp_alpha evitam o overfitting.

8. Regularizacio de ruido: Ao adicionar ruido aos dados de treinamento, uma pequena
quantidade de ruido serd adicionada a cada instancia de treinamento e geraré dife-
rentes versdes da mesma instincia, expandindo cada conjunto. Essa camada extra é

comumente usada em algoritmos de rede neural pois ajuda a evitar o overfitting.

9. Regularizacéo de ""abandono'": E um método de regularizagio especifico da rede

neural que remove aleatoriamente alguns nds da rede durante o treinamento com base
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no valor da probabilidade que definimos em cada camada. Os nés removidos ndo
participam do processo de atualizacao dos parametros e a regularizacio € aplicada
por camada. A rede original torna-se menor apds a aplicacao deste algoritmo e, assim

sdo menos flexiveis.

No artigo de DEMSAR; ZUPAN (2021), os autores enfatizam que a modelagem nio
se limita a ajustar os parametros do modelo, mas inclui todos os outros procedimentos como
pré-processamento de dados, selecdo de modelo e ajuste de hiperparametros. O experimento
feito demonstrou que € inevitdvel ndo ter esta etapa de pré-processamento de dados antes de
alimentar os dados em um algoritmo de aprendizagem, pois o resultado final do algoritmo

depende estritamente desta metodologia para ser util.

2.5 Cross-Validation (Validacao Cruzada)

A Validagdo Cruzada (CV) € uma técnica de reamostragem usada para avaliar modelos de
ML em uma amostra limitada de dados ou desconhecido dados que ajudariam a fazer previsoes
sobre dados que ndo foram usados durante o ciclo de treinamento. Segundo RABELLO (2019),
o CV consiste em particionar os dados em conjuntos (partes), onde um conjunto € utilizado
para treino e outro conjunto € utilizado para teste e avaliacdo do desempenho do modelo. Este
procedimento tem altas chances de detectar se o seu modelo estd sobreajustado aos seus dados
de treinamento, ou seja, provocando overfitting. O uso de subconjuntos aleatérios de dados em
validagdo cruzada, também conhecida como valida¢do cruzada k-fold, ¢ uma forte maneira de
testar a taxa de sucesso dos modelos usados para classificagio MiLLER (2020).

Na validagdo cruzada, um conjunto de dados D € particionado em k dobras (subconjuntos
disjuntos) D; parai= {1, ..., k}. A cada iteracdo, treino e teste, um conjunto formado por K-
1 subconjuntos sdo utilizados para treinamento e o subconjunto restante serd utilizado para
teste gerando um resultado de métrica para avaliacdo (ex: acurdcia). Um particionamento
aleatério classico do conjunto de dados em k dobras permite que haja registros presentes
simultaneamente tanto no treinamento quanto na valida¢do, induzindo assim o vazamento de
dados e gerando estimativas superotimistas de desempenho em comparacao com a validacao
cruzada sem duplicatas, que dispde a estimativa imparcial. GUO (2021)

O processo k-fold ¢ um mecanismo que minimiza as desvantagens do método hold-out,
que é uma metodologia da qual divide o conjunto de dados em duas partes: o conjunto de
treinamento e o conjunto de teste e normalmente, 80% do conjunto de dados vai para o conjunto
de treinamento e 20% para o conjunto de teste nos diversos casos, todavia, sdo parametros
ajustdveis e fica a cargo do programador adapti-los. Apesar da facilidade do método hold-out,
se o conjunto de dados nao for completamente uniforme ou bem distribuido, pode ser que ao
separar os dois conjuntos (de treinamento e de testes) ocorra uma divergéncia significativa entre

os conjuntos, o que reflete na precisdao da acurdacia do modelo.
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A figura 2.18 apresenta uma nova maneira de dividir o conjunto de dados que supera as
consequéncias do método classico hold-out que baseado no referencial LYASHENKO (2023)

funciona da seguinte forma:

Iteration 1 Test Train Train Train Train
Iteration 2 Train Test Train Train Train
lteration 3 Train Train Test Train Train
Iteration 4 Train Train Train Test Train
Iteration 5 Train Train Train Train Test

Figura 2.18: Procedimento k-fold; Imagem extraida de SHAIKH (2018).

1. Escolha um nimero de folds-k, neste caso, k = 5.
2. Divida o conjunto de dados em k partes iguais chamadas de dobras, se possivel.

3. Escolha k — 1 dobras como o conjunto de treinamento. A dobra restante serd o

conjunto de teste.

4. Treine o modelo no conjunto de treinamento. A cada iteracao de validag¢do cruzada,
vocé deve treinar um novo modelo independentemente do modelo treinado na iteragao

anterior.
5. Valide o conjunto de teste.
6. Salve o resultado da validacao.

7. Repita os passos {3, ..., 6} k vezes. A cada vez, use a dobra restante como conjunto

de teste. No final, o modelo deve ter sido validado em todas as dobras que possui.

8. Para obter a pontuacao final, a média dos resultados obtidos na etapa 6 deve ser
calculada.

O K-Fold estratificado € uma variacio da técnica padrdo de k-Fold CV, projetada para ser
eficaz nesses casos de desequilibrio do valor alvo. A técnica, comumente chamada de Validagcao

Cruzada Estratificada (SKCV), garante que as frequéncias de classe relativas sejam efetivamente
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sustentadas em cada divisdo na fase de validacdo quando usadas amostragens estratificadas
em vez de amostragens aleatdrias, principalmente em problemas de classificacio PRUSTY;
PATNAIK; DASH (2022).

Este método, que usa amostragem estratificada, divide o conjunto de dados k dobras de
modo que cada parte contenha aproximadamente a mesma porcentagem de amostras de cada
classe de destino que o conjunto completo. No caso de regressdo, o SKCV garante que o valor

alvo médio seja aproximadamente igual em todas as dobras.

StratifiedKFold

[ Testing set
[ Training set
2 3 4 5

1 1
class 1
CV iteration

Sample index

Figura 2.19: Método SKCV; Imagem extraida de SHAIKH (2018). O eixo x representa as
iteragdes do CV e o eixo y o indexador dos conjuntos.

O SKCV preserva as frequéncias de classe em cada dobra para serem as mesmas do
conjunto de dados geral. A figura 2.19 € um exemplo de um conjunto de dados com trés classes
ordenadas. Se for aplicado um k-3 ao algoritmo, o primeiro terco dos dados estaria na primeira
dobra, o segundo na segunda dobra e assim por diante. Como esses dados estdo ordenados, a
validag¢do cruzada comum seria ruim pois ird perder a consisténcia entre os dados, ao contrario

do SKCV que garante que cada parte terd exatamente 1/3 dos dados de cada classe.

2.6 Métricas de avaliacao

Avaliar o algoritmo de aprendizado de mdquina é uma parte essencial de qualquer
projeto de ML, pois para verificar se o classificador conseguiu predizer corretamente o conjunto
de treinamento, € preciso mensurar a sua competéncia de predizer o modelo. A precisao da
classificacdo € usada para medir o desempenho do modelo, todavia, nem sempre a avaliagc@o serd
satisfatdria e os resultados vao variar de acordo com a métrica escolhida. Por exemplo, a métrica
precisdo_score pode, em alguns casos, fornecer resultados ruins quando avaliado em relacdo a
outras métricas.

Uma métrica exclusiva ndo € o suficiente para determinar a acuricia correta do modelo,

diante disso, este topico retratard as diferentes métricas existentes para calcular a eficiéncia do



2.6. METRICAS DE AVALIACAO 46

modelo preditivo, levando em conta como € feito a estimativa e a sua relacdo com a matriz de
confusao.

A matriz de confusdo exibird a distribui¢ao dos registros em termos de suas classes atuais
e de suas classes previstas e detalha em como o classificador preveu o conjunto. A tabela 2.1
mostra as frequéncias de classificagdo para cada classe do modelo por meio dos valores de TP,
TN, FP, FN.

Em que TP, FP, TN e FN significa respectivamente:

» Verdadeiro positivo (frue positive — TP): quando o método diz que a classe € positiva

e, ao verificar a resposta, vé-se que a classe era realmente positiva.

» Falso positivo (false positive — FP): quando o método diz que a classe € positiva,

mas ao verificar a resposta, vé-se que a classe era negativa;

» Verdadeiro negativo (true negative — TN): quando o método diz que a classe é

negativa e, ao verificar a resposta, vé-se que a classe era realmente negativa;

» Falso negativo (false negative — FN): quando o método diz que a classe é negativa,

mas ao verificar a resposta, vé-se que a classe era positiva;

Tabela 2.1: Representagcdo em tabela da matriz de confusdo com seus respectivos valores
booleanos.

Conjunto TN FP FN TP

Classe real 0 0 1 1
Classe prevista 0 1 0 1

Ao término de cada cdlculo de métrica, o algoritmo de treinamento ird efetuar a avaliacio
do melhor modelo preditivo baseado na melhor taxa de score.

Ha métricas como o Precision, Recall, F1, F-Beta e o Roc-AUC. E, no geral, a matriz de
confusdo € a base de cdlculo para estas métricas.

O precision-score ¢ uma métrica de classificacdo que mede a capacidade de um classifi-
cador de nao rotular como positiva uma amostra negativa. Ou seja, se o classificador tiver muitos
acertos sobre o conjunto verdadeiro-positivo, isso resultard em uma pontuacdo de precisdo mais
alta. Quanto maior o valor da métrica, melhor. O melhor valor possivel é 1 (se um modelo
acertou todas as previsdes) e o pior € 0 (se um modelo nio fez uma tnica previsio correta).

Precision = L 2.14
TP+FP
O recall-score € uma métrica de classificacdo que apresenta uma proporcdo de previsdes

da classe verdadeira-positiva em relacdo ao numero total de amostras positivas. Em outras
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palavras, recall mede a capacidade de um classificador para detectar amostras positivas sobre um
modelo.
TP

Recall = ——— 2.15
TP+FN

A pontuacdo F1 pode ser interpretada como uma média harmonica do Precision e Recall

pois a contribuicdo relativa de ambas € igual. A equagdo do FI-score é:

(precision - recall)

F1=2. 2.16

(precision + recall)

A pontuacgdo F-beta € a média harmonica ponderada de precision e recall, atingindo seu
valor ideal em 1 e seu pior valor em 0.

_ 14 B2 (precision - recall)

F, = 2.17

(B2 - precision) + recall

O parametro beta representa a razdo entre o recall e o precision. beta > 1 dd mais peso
ao recall, enquanto beta < 1 favorece o precision. Assintoticamente, se o beta tender a +inf
considera-se apenas o recall e beta tendendo O apenas precision

A curva ROC ou “Curva Caracteristica de Operacao do Receptor” € um grafico que
permite avaliar um classificador bindrio levando em consideracdo a taxa de verdadeiros positivos
(TP) e a taxa de falsos positivos (TF). Essas taxas também podem ser referidas pelas siglas TPR
(True Positive Rate) e FPR (False Positive Rate), respectivamente. Esse grafico permite comparar
diferentes classificadores e definir qual o melhor com base em diferentes pontos de corte. Na
prética, quanto mais préximo do topo do eixo Y melhor o classificador DORING (2018). O ROC

possui dois parametros:

= Taxa de verdadeiro positivo (do inglés, True Positive Rate), que € dado por:

TPR= ' _

“TPYFN

= A Taxa de falso positivo (do inglés, False Positive Rate), que é definida da seguinte

maneira:
FP

FPR= ——
FP+TN

2.19

Uma curva ROC € um plano bidimensional em relacdo as duas taxas (TPR e FPR) nos
diferentes limiares de classificagdo. Reduzir o limite de classificacdo determina mais itens como
positivos, o que aumenta os falsos positivos e verdadeiros positivos. Uma curva tipica de ROC é

apresentada como:



2.6. METRICAS DE AVALIACAO 48

The ROC Curve
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Figura 2.20: Curva ROC e as previsdes da classe positiva (TPs) e falsos positivos (FPs)
GOLDSTEIN-GREENWOOD (2022)

AUC significa "drea"sob a curva ROC, ela € a derivada da curva ROC. Nesta métrica, hd
a soma da regido abaixo da curva ROC inteira, como se fosse o cdlculo de uma integral definida.
O valor do AUC varia de 0,0 até 1,0 e o limiar entre a classe € 0,5. Portanto, acima desse limite,
o algoritmo classifica em uma classe e abaixo em outra classe.

Uma maneira de interpretar a AUC € a probabilidade de o modelo classificar um exemplo
positivo aleatério mais alto do que um exemplo negativo aleatério. Por exemplo, considerando

em ordem crescente de previsdes de regressao logistica:
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Receiver operating characteristic example
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Figura 2.21: Curva AUC abaixo da curva ROC. Extraida de DERNONCOURT (2015)

A AUC pode ser aplicavel conforme o objetivo a priori, sendo recomenddvel por dois

motivos:

» E invariante em escala, uma vez que trabalha com precisdo das classificagdes ao invés

de seus valores absolutos.

» Mede a qualidade das previsdes do modelo, independentemente do limiar de classifi-

cacdo

Apesar de util na invariancia dos resultados e na independéncia do limiar para a medi¢ao
da qualidade de previsdo do modelo, hd ressalvas que podem limitar o uso do AUC em ocasides

especificas:

1. Nem sempre uma variacao € adequada quando se trata de escalonamentos: O objetivo

do classificador € equilibrar as probabilidades de cada TPRs e FPRs a cada iteragao.

2. A incompatibilidade de limite de classificacdo nem sempre € desejada: Nos casos
em que had amplas disparidades no custo de falsos negativos em comparagdo a falsos

positivos, pode ser essencial minimizar um tipo de erro de classificacao.
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Revisao da literatura

A construcao do estado de conhecimento teve como principio a andlise sistematica de
dissertagdes, teses, trabalhos cientificos e artigos produzidos em um lapso temporal de 6 anos.
A estratégia utilizada para a revisdo sistemaética da literatura busca seguir os critérios adotados
por KITCHENHAM; BRERETON (2013) tendo o trabalho de BONIDIA et al. (2021a) como

exemplo.

3.1 Questoes de pesquisa

As questdes de pesquisa norteam a revisdo sistemdtica e ttm como objetivo definir
a parametrizacdo da problematica identificando os trabalhos que propunham a extracdo de
caracteristicas em sequéncias de RNAs, quais métodos de extracdo mateméaticos bem como o
comparativo da técnica bioldgica em detrimento dos modelos matemaéticos e a acuricia de cada
método considerando um grupo de RNAs nao-codificantes (ncRNAs). Portanto, as Questoes de

pesquisa (QP) foram definidas a seguir:

= QP; Quais os métodos de extracdo de caracteristicas em sequéncias de RNAs?
= QP Quais os modelos matematicos utilizados na extragao?

» QP3 Quais os grupos de ncRNAs a serem trabalhados e os modelos matematicos

aplicados?

3.2 Estratégia de busca

As bases de dados PubMed Central, repositério da UnB, Oxford Academic, Medline,
SIABI/IFB foram consumidas para embasamento tedrico e argumentativo da tese. O PubMed
Central é um banco de dados digital gratuito de literatura cientifica na drea de biomedicina
e tecnologia gerenciado e desenvolvido pela National Library of Medicine que contém um
vasto repositorio de artigos cientificos mundialmente reconhecido. O repositério da UnB €
um servi¢o digital oferecido pela Biblioteca Central para a gestdo e disseminacao da produgdo

cientifica da Universidade de Brasilia. A base da Oxford Academic publica os periddicos de
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cunho cientifico geral para o publico em mais alta qualidade, dispondo de uma comunidade
académica da Universidade de Oxford. A Medline que € uma biblioteca virtual de medicina a
qual detém os dados indexados por uma palavra-chave especifica do sistema MeSH e, por fim, o
SIABI/IFB, biblioteca virtual do IFB que disponibiliza os recursos dos campus existentes em

Brasilia.

Tabela 3.1: Base de dados consumidas

Base de dados Link para acesso

PubMed Central <https://pubmed.ncbi.nlm.nih.gov/>

Repositorio UnB <https://repositorio.unb.br/>
Oxford Academic <https://academic.oup.com/journals>
Medline <http://bases.bireme.br/>
SIABI/IFB <http://siabi.ifb.edu.br/>

Para cada base de dados escolhida foram realizadas buscas avangadas em suas ferramentas
de pesquisa com um intervalo de tempo de 6 anos até a data de realizacao desta revisao (24 de
junho de 2022), contemplando como palavras-chaves de pesquisa: ncRNAs, machine learning,
feature extraction, sequence features, mathematical approach as quais resultaram em um conjunto
de mais de 300 literaturas. Visando diminuir o escopo das produgdes para a problematica em
questdo, modificou-se o critério de andlise que apenas considerava o titulo e resumo dos materiais
e passou-se a levar em conta apenas os trabalhos que continham ncRNAs como objeto de estudo.
Na secdo posterior, mais especificamente no processo de selecdo e exclusio, ao passar pela
critica qualitativa das obras, as literaturas serdo menos abrangentes e mais voltadas ao estudo de
caso da tese. A tabela 3.2 mostra a quantidade de artigos cientificos retornados por cada banco

de dados no campo de busca.
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Tabela 3.2: Resultado das buscas nos bancos de dados

Base de dados Palavras-chaves

Producdes cientificas

PubMed Central Machine learning, sequence features, ncRNAs 98
Repositério UnB  Machine learning, ncRNAs 5
Oxford Acade- Machine learning, ncRNAs, mathematic sequence 153
mic features

Medline Machine learning, ncRNAs, mathematic sequence 34
SIABV/IFB Machine learning 2
Total 292

3.3 Critério de inclusio e exclusao

Para responder as QPs definimos Critérios de Inclusdo (Cls) e Critérios de Exclusdo

(CEs) que irao filtrar os resultados das pesquisas. Os Cls estdo listados a seguir.

» Critério de inclusdo (CI); Producdes cientificas que usam os ncRNAs como objeto

de pesquisa para a extragdo de caracteristicas;

» CI, Estudos primdrios que aplicam modelos preditivos supervisionados ou ndo super-

visionados sendo bioldgico, hibrido ou matematico para classificacdo de ncRNAs;

» CI3 Estudos que classificam as classes e grupos de ncRNAs aplicando o modelo

matematico de extragdo de caracteristicas;

Os Critério de exclusdao (CE) irdo ajudar a filtrar apenas os artigos cientificos relevantes

para a revisdo. Baseado nas questdes de pesquisa que norteam o trabalho, os CEs propos-

tos abaixo selecionardo um grupo concreto de produgdes a fim de diminuir a abragéncia e a

generalizagcao do tema.

» Estudos que ndo estejam escritos em portugués ou inglés;

Estudos que a versdao completa ndo € disponivel gratuitamente;

s Estudos "duplicados", que foram obtidos através da busca em mais de uma base,

nestes casos apenas o primeiro serd considerado.

Producdes cientificas que nao classificam o grupo de ncRNAs;

» Estudos descritivos de funcionalidades que ndo discorre sobre a metodologia de

Aprendizado de mdquina (ML) empregue;
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3.4 Analise e discussio das literatuas

As aplicacdes do AM extraem informacdes relevantes de sequéncias baseadas em vdrias
propriedades bioldgicas e fisico-quimicas, usando quadros de leitura abertos (ORF), frequéncia
de uso de nucleotideos adjacentes, conteido GC e entre outros. Essas abordagens sdo comuns
em problemas bioldgicos, mas essas implementacdes sao muitas vezes dificeis de reutilizar ou
adaptar a outro problema especifico. Um grande exemplo € que os recursos ORF sdo um guia
essencial para ncRNAs de genes codificadores de proteinas, mas nao sdo capazes de classificar
classes para os ncRNAs, e, como dito por SZCZEANIAK et al. (2020), consequentemente, a
extragdo de um conjunto de caracteristicas que contém informacdo discriminatoria significativa
para identificéa-las € prejudicada, o que influencia na constru¢do de um modelo preditivo.

BONIDIA et al. (2021a) propde um modelo preditivo matemadtico para identificagdo
de classes de ncRNAs. Este trabalho foi dividido em trés estudos de caso: (I) Avaliacao das
abordagens matemadticas com os problemas mais frequentes da classe de ncRNAs, por exemplo,
IncRNA versus mRNA; (I1) Teste de generaliza¢do em diferentes classificadores de ncRNAs; (I11)
Andlise de persisténcia em cendrios com dados desbalanceados. As técnicas de ML aplicadas
consistem na transformacao discreta de Fourier, mapeamento numérico (representacdo de Voss,
de Real, de z-curve, de EIIP e de nimeros complexos), entropia de Shannon e Tsallis € o uso de
redes complexas.

WANG et al. (2014) em contra-proposta aplica um Algoritmo genético (GA) junto a uma
SVM que implementa o método de aprendizado de maquina supervisionado baseado no conceito
da teoria de Darwin, isto €, o conjunto de sequéncias que mais se adaptam a parametrizacao
de classificacdo dos algoritmos sdo herdadas na préxima geracao a partir do mecanismo de
competicdo. Em suma, a classificacdo executa um modelo preditivo bioldgico na categorizagdo
do grupo de ncRNAs.

BONIDIA et al. (2021b) apresenta um pacote de 20 descritores matematicos divididos
em 5 grupos: mapeamento numérico, chaos game, transformacao de Fourier, entropia e grafos.
Similar ao seu estudo comparativo BONIDIA et al. (2021a), o autor executa o estudo de caso
nos ncRNAs treinando o algoritmo CatBoost para classificagdo de classes e concluiu que a
abordagem matemadtica trouxe uma eficicia significativa nos resultados.

ARAUIJO (2016) busca classificar as classes de snoRNAs (H/ACA box snoRNA e C/D box
snoRNA) empregando uma técnica mais sofisticada na fase de treinamento no intuito de encontrar
bons meta-parametros da SVM. A ideia € usar o Explicit Decomposition with Neighborhoods
(EDeN), um kernel decomposicional de grafos baseado no Neighborhood Subgraph Pairwise
Distance Kernel (NSPDK), que pode ser usado para a geracao explicita de features a partir de
grafos e as SVMs que geram um hiperplano como superficie de decisio de tal modo que a margem
de separacdo entre amostras positivas e negativas ¢ maximizada formando, posteriormente, as

classes preditas no hiperplano.
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ARAUIJO (2017) € a versao melhorada do snoReport 1.0, ferramenta cuja fora utilizada
em ARAUJO (2016) para a classificacdo de snoRNAs usando uma combinacao de estruturas
secunddrias e ML. A aprimorac¢ao do snoReport contemplou novos recursos para os SnHoORNAs
box C/D e H/ACA box, desenvolvendo uma técnica robusta na fase de treinamento da SVM (com
dados recentes de organismos vertebrados e o refinamento dos parametros C e gamma na SVM),
consumindo ainda mais bancos de dados para expandir a cole¢do anterior do snoReport. Para
validar a sua serventia, houve diversos testes em organismos animais 0s quais mostraram um
6timo desempenho de classificagdo.

AOKI; SAKAKIBARA (2018) aborda a classificacdo de ncRNAs fundado nas redes
neurais convolucionais. O treinamento € feito por representacdes distributivas de 4 nucleotideos
que derivaram com sucesso as matrizes de peso de posi¢do em kernels aprendidos que corres-
pondem a sequéncia de motifs como locais de ligagcdo a proteinas. A classificacdo de um par
alinhado de duas sequéncias em classes positivas e negativas corresponde ao agrupamento das
sequéncias de entrada. Depois de combinarmos a distribui¢do representativa de nucleotideos
de RNA com a informacdo da estrutura secundéria especifica para ncRNAs e ainda com perfis
de mapeamento de leituras de sequéncia de proxima geragdo, o treinamento de CNNs para
classificacdo de alinhamentos de sequéncias de RNA rendeu agrupamento preciso em termos de
familias ncRNA e superou os métodos de agrupamento existentes tradicionais para sequéncias
de ncRNA. Interessantes sequéncias de motifs e estruturas secunddrias conhecidas pelas familias
de snoRNAs, microRNA e tRNAs foram identificadas no estudo.

NAVARIN; COSTA (2017) sugere um estudo voltado a classificacdo funcional de
ncRNAs fundamentado na implementacio de um grafo kernel. Para lidar com entidades represen-
tadas como grafos, uma variedade de kernels t€m sido propostos na literatura. Diferentes nogdes
de similaridade sdo obtidas escolhendo diversos tipos de subestruturas a serem consideradas,
desde caminhos até pequenos subgrafos. Existem vdrias maneiras de representar estruturas
secunddrias de RNA, incluindo as representacdes entre colchetes (onde os nucleotideos sao
convertidos em nds e ligacdes em arestas) e representacoes em arvore (onde pares de bases sdao
convertidos em nds ’tronco’ e nucleotideos de al¢a sdo convertidos em nos de ’loop’). Cada
representacdotem diferentes vantagens e desvantagens, incluindo perda de informacdes e comple-
xidade de cdlculo. A estratégia NSPDK, assim como no trabalho de ARAUJO (2017), € adotada
com o objetivo de materializar a codificacdo de caracteristicas implicitas que € chave para obter
eficiéncia linear na fase de classificacdo. Neste artigo, a representag@o escolhida € a loss-less, ou
seja, sem perda, onde os nés representam nucleotideos e as arestas sao as ligacdes entre eles,

seja do tipo backbone ou do tipo de encadernacdo.

3.5 Conclusao dos resultados apresentados na analise

Através da andlise e discussdo dos resultados da revisdo, percebemos que existe a

exploracdo de modelos preditivos matemdticos para a classificagdo de ncRNAs em oposicao



3.5. CONCLUSAO DOS RESULTADOS APRESENTADOS NA ANALISE 55

aos modelos tradicionais biologicos. Este fato deve-se pela alta taxa de F-score, em outras
palavras, da acurdcia no classificamento de classes para os ncRNAs. Apesar da perspectiva
biolégica e hibrida, em contraste com a matematica, sua escolha varia de acordo com o objeto
de estudo analisado e a sua eficiéncia de identificagdo. Ha algoritmos que sdo melhores para
classificagdo de moéleculas de DNAs, assim como hd outros mecanismos de classificagdo que
produzem resultados significativos para as moléculas de RNAs. No atual contexto, os projetos
cientificos revelam que a extracdo de caracteristicas por um cendrio matematico demonstrou
ser relevante para classificacdo de ncRNAs. O principal enfoque da monografia é demonstrar o
custo do algoritmo, o pipeline das etapas a serem executadas desde a entrada, a parametrizacao,
treinamento e testes até a saida. Mesmo que muito progresso ja tenha sido feito, existem
incognitas para este grupo importante de moléculas que podem ser respondidas pelo avango do
AM. Com base nas provas de conceito observadas € possivel perceber a capacidade do modelo
preditivo matematico de identificar os ncRNAs e do beneficio da identificacio em um ambito

biomedicinal.
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Projeto

O capitulo de projeto disserta sobre os estdgios do AM voltado ao campo de pesquisa
abragendo detalhadamente a constru¢@o do conjunto de dados ponderando sobre a quantidade de
sequéncias encontradas de cada classe de snoRNAs e as tomadas de decisdo na constru¢do do
conjunto negativo.

Explicard a etapa de pré-processamento dando €nfase, sobretudo, aos calculos estatisticos
do percentil dos dados, a média, variancia e o valor mdximo e minimo de sequéncias por familia
identificado sdo informacdes que irdo compoOr este capitulo. Esta fase mostra como € feito o
balanceamento dos conjuntos positivos e negativos na elabora¢ao do conjunto final a ser usado
como entrada para o algoritmo de extragdo.

Na fase de extracdo introduzird o conceito de automatizacao de scripts no que diz respeito
aos algoritmos de extracdo empregues, aplicando o paralelismo de execu¢do com o propoésito de
acelerar a extracdo de caracteristicas do conjunto de dados.

Em seguida, explicaré o processo de treinamento responsdvel em dividir o nosso conjunto
de dados para treino e testes. Nesta se¢do havera a menc¢do a validacao cruzada, o método hold-
out de particionamento de dados, o algoritmo de classificacdo Random Forest, os hiperparametros
do estimador sobre uma grade de parametros e a matriz de confusao que exibe a distribuicdo dos
registros em termos de sua classe.

Por ultimo, € esclarecido o pipeline de treinamento e os estudos de caso que norteard
a pesquisa. As métricas sdo fundamentais nesta etapa para avaliar a acurdcia do preditor em
classificar as duas classes de snoRNAs (C/D e H/ACA).

4.1 Coleta de dados

A busca por sequéncias das duas classes de snoRNAs foi feita a partir do banco de dados
RFAM no intuito de agrupar o conjunto de sequéncias por sua respectiva familia.

Criou-se um arquivo de script em shell para baixar automaticamente todas as sequéncias
de cada familia, definindo o nome do arquivo baseado no nome da familia com o formato da
extensdo fasta, cujo € a extensdo padrao de representacio de sequéncias de nucleotideos. Cada

arquivo foi designado a pasta com o nome da sua classe de snoRNA.
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Em sua totalidade, foram obtidas 4877 sequéncias de snoRNAs C/D box entre 475
familias e 2813 sequéncias de snoRNAs H/ACA box entre 283 familias para o conjunto positivo
de dados.

Em contra-partida, condicionou-se o esforco em construir o conjunto negativo consu-
mindo as familias RNase P, 5S rRNA e tRNA e algoritmos de embaralhamento, o que proporcio-
nou o total de 4999 sequéncias, sendo 2433 sequéncias de RNAs ndo pertencentes a snoRNAs e
2566 sequéncias aleatdrias.

E evidente que a desproporcionalidade entre a quantidade de sequéncias de um grupo ao
outro pode afetar inteiramente a classificacdo do snoRNA na etapa de aprendizado de médquina e,

portanto, no momento deve ser considerado dados brutos ndo-processados.

4.2 Pré-processamento de dados

Usando as familias como base de cdlculo e constru¢ido do conjunto positivo, extraiu-se o
percentil de 85% dos dados, a média aritmética, a variancia, e o valor maximo e minimo das

quantidades de sequéncias conforme expresso na tabela 4.1.

Tabela 4.1: Métricas de célculo do conjunto positivo

A . Percentil = A (. .
Classe Sequéncias Familias 0.85) Média Variancia Maximo Minimo
C/D box 4877 475 6 4 2.5589 7 2
H/ACA box 2813 283 22 5 27884.03 76

As métricas de cdlculo balancearam por meio da média aritmética a quantidade de sequén-
cias esperadas por familia para que o algoritmo de maquina de aprendizagem as consuma em
agrupamento equivalente. Dessa forma, ao prefedinir essa condicao, sobraram 1553 sequéncias
de C/D box e 1013 sequéncias de H/ACA box para composi¢do do conjunto positivo de dados.

Em consonancia, é necessdrio do conjunto negativo para treinar e testar o modelo de
classificagdo a ser gerado, entdo, a elabora¢do do conjunto negativo teve como regra fundamental
que 50% do conjunto seria criado por sequéncias geradas aleatérias por um algoritmo de
embaralhamento a medida que a outra metade seria formada por sequéncias genéticas de RNAs
tais como Ribonuclease (RNase) P, 5S RNA ribossémico (rRNA) e RNA transportador (tRNA),
considerando que o tamanho maximo delimitado para o conjunto negativo seria trés vezes maior
que o conjunto positivo. Assim, adquiriu-se um total de 3166 sequéncias.

Tendo esta condicdo preestabelecida, obteve-se 1500 sequéncias geradas aleatdrias e
1666 sequéncias constituidas pela mesclagem de RNase P, 5S rRNA e tRNA, totalizando 3166

sequéncias no conjunto negativo.
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4.3 Extracao

Os métodos de extracdo de caracteristicas utilizados sdo de natureza matematica como
0 mapeamento nimerico com as transformacdes de Fourier (Real, Z-curve), as entropias de
Shannon e Tsallis e as redes complexas. Todos os algoritmos de extragdo de caracteristicas
podem ser extraidos do Github de BONIDIA et al. (2021a).

A criagdo de scripts na etapa de extracdo foi primordial para automacao das atividades
repetitivas no que tange a eficiéncia e rapidez pois facilitou a adequagdo de parametros para os
algoritmos de extracdo, a organizagdo de entrada e saida de dados em arquivos (principalmente
aqueles que continham o formato fasta em sua extensao) e a execugdo paralela dos algoritmos
para acelerar a fase de extracdo e agrupamento de dados.

A extracdo retornou um arquivo no formato csv abrangendo as colunas com as caracteris-
ticas encontradas em cada familia pelos algoritmos. Vale ressaltar que estes dados sdo puramente
continuos, logo, é possivel que haja valores infinitos e que ndo sejam numéricos. E relevante ter
a ciéncia desta propriedade dos dados pois posteriormente haverd um tratamento em torno destes
valores no estagio de pré-execugao do classificador.

Para agrupar todos esses arquivos de formato csv a classe de snoRNA pertencente, usou-
se as ferramentas "pré-embutidas"do sistema Linux de concatenacdo e manipulacio do contéudo

existente do arquivo como cat, awk, grep.

4.4 Treinamento

No processo de treinamento, em busca de um resultado satisfatério do algoritmo classi-
ficador por meio das extra¢des de caracteristicas obtidas, estabeleceu-se um fluxo de trabalho

(4.1) com o passo-a-passo das operagdes do algoritmo:
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Entropia de Shannon

Redes Complex:

Treinamento

Figura 4.1: Fluxo de trabalho do algoritmo.

Dividiu-se o conjunto de treino e de testes tal que 70% do conjunto original ficou
para treino enquanto os 30% restantes ficaram para o conjunto de testes e estes valores foram
passados para a funcdo train_test_split provida pelo pacote sklearn.model_selection em Python.
No treinamento sem validag¢do cruzada, ha um pardmetro chamado test_size responsdvel por
estabelecer a quantidade de iteracdes que o algoritmo de treino ird efetuar para que no final possa
avaliar qual destes modelos de saida teve o melhor proveito. Em contrapartida, no treinamento
com validacdo cruzada, o parametro n_estimators designa a propor¢ao de modelos em uma
unica execug¢do do algoritmo de modo que obtenha o melhor estimador entre a por¢do avaliada
apoiado pelas métricas de avaliagao.

Optou-se também em escolher o algoritmo de classificagdo Random Forest por ter sido um
algoritmo promissor na pesquisa de BONIDIA et al. (2021a) a qual foi testada a sua generalizacdo
em diferentes tarefas de classificacdo para RNAs longos nao-codificantes (IncRNAs) a partir de
dados desbalanceados.

Os hiper-parametros de ajuste utilizados na Random Forest para cada método de extracio

de caracteristicas estio dispostos na tabela 4.2.



4.4. TREINAMENTO 60

Tabela 4.2: Hiperparametros da Random Forest sem usar a funcio GridSearchCV

Parametro Valor

"bootstrap"  true
"ccp_alpha" 0.0
"class_weight" None
"criterion"  gini
"max_depth" 10
"max_features" sqrt
"max_leaf_nodes" None
"max_samples" None
"min_impurity_decrease" 0.0
"min_samples_leaf" 1
"min_samples_split" 2
"min_weight_fraction_leaf" 0.0
"n_estimators” 100
"n_jobs" None
"oob_score" false
"random_state" None
"verbose" 0

"warm_start" false

Para automatizar este processo de runing de hiperparametros, foi-se utilizado a fun¢do
GridSearchCV do moédulo sklearn em Python. O objetivo primario do GridSearchCV € a criagao
de combinacdes de parametros a partir de uma busca exaustiva sobre valores especificados para
um estimador (score, ou seja, métrica de avaliacdo), para posteriormente avalid-las.

Os parametros do estimador usados para aplicar esses métodos sdo otimizados e refinados
por valida¢do cruzada (cross-validation) sobre uma grade de parametros.

De forma semelhante aos hiperparametros padrdes da Random Forest, o GridSearchCV

aplicou os seguintes parametros conforme mostrado na tabela 4.3.
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Tabela 4.3: Hiperparametros da Random Forest apds o uso da fung¢do GridSearchCV

Parametro Valor
"mean_fit_time" array([0.03470263, 0.34155726, 1.70107441])
"std_fit_time" array([0.00415981, 0.02498759, 0.14168099])
"mean_score_time" array([0.00217724, 0.01229601, 0.04444399])
"std_score_time" array([0.0001098 , 0.00510206, 0.01017052])
"param_n_estimators" masked_array(data=[10, 100, 500])
"mask" array([False, False, False]

"params" array[’'n_estimators’: 10, 'n_estimators’: 100, 'n_estimators’: 500]
"split0_test_score" array([0.98817967, 0.99061033, 0.99061033])
"split]_test_score" array([0.98337292, 0.98329356, 0.98337292])
"split2_test_score" array([0.98584906, 0.98352941, 0.98352941])
"split3_test_score" array([0.98345154, 0.98113208, 0.98113208])
"split4_test_score" array([0.98578199, 0.98584906, 0.98578199])
"mean_test_score" array([0.98532703, 0.98488289, 0.98488535])

"std_test_score" array([0.00178623, 0.00322997, 0.00321846])
"rank_test_score" array([1, 3, 2])

4.5 Estudo de caso: classificacido de snoRNAs em conjunto de dados encontrados na

literatura

Nos estudos de casos, as operacdes foram divididas em N execucdes e para cada execucio
ocorrerd a verificacdo das métricas de avaliacdo para que na etapa de testes seja escolhido o
melhor modelo encontrado para cada método de extracao.

As validacdes de treinamento envolvem qualquer validagao em que o modelo precise
ser retreinado. Normalmente, isso inclui testar diferentes modelos durante um tnico pipeline de
treinamento. Essas validacOes sdo realizadas nesta fase de treinamento/avaliacdo do desenvolvi-
mento do modelo, e muitas vezes sao mantidas como cddigo de experimentacao, nao fazendo
parte do produto final do classificador.

O pipeline de treinamento inicia-se ao carregar o modelo preditivo com a melhor acuricia
na pontuacdo f1_score por método de extracdo de caracteristica, € entdo feito dois estudos de caso
em torno do conjunto de dados do mundo real como o genoma de vertebrados e invertebrados tais
como galinhas, moscas pertencentes a familia Drosophilidae, nematédeos da familia Rhabditidae,

protozodrios da familia Trypanosomatidae como o leishmania, humanos e de ornitorrincos:

1. Estudo de Caso: Adicionar o conjunto de dados reais de acordo com sua respectiva
classe de snoRNAs dos genomas encontrados e usar o modelo para predizer este

conjunto.
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2. Estudo de Caso: Comparar os resultados obtidos pela predicdo do conjunto de

treinamento avaliando o comportamento do classificador com referéncias de outros

artigos que predizeram as duas classes de snoRNAs (C/D box e H/ACA box)

Para cada estudo de caso, € efetuado um teste sem validacdo cruzada e outro com
validagdo cruzada para fins comparativos entre a acuricia da predi¢do por modelo.

Antes da estimacdo do modelo preditivo, nos estudos de caso em que € feito uma
validacdo cruzada, a execucdo do treinamento divide o conjunto em dados de treino e de testes
em diferentes partes do modelo de forma que valide o desempenho de cada modelo em um dado
intervalo, garantindo a generalizacdo dos dados apresentados dentre os melhores parametros
encontrados.

O célculo de acertos e erros € feito pela matriz de confusdo que mostra as frequéncias
de classificag@o para cada classe de snoRNAs. A matriz nos conduz a uma breve anélise das
estimativas ainda que nao tenha sido englobada a uma métrica de avaliagdo, como a figura 4.2

exemplifica.

entropy_shannon

- 800

- 700

Labels

Predicted

Figura 4.2: Matriz de confusdo na etapa de treinamento usando o método de Entropia de Shannon
para a classe de snoRNAs C/D box. (Labels sdo rétulos e Predicted sdo as predicdes.)
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Resultados

Primeiro, serd apresentado as estatisticas dos testes de desempenho. Entdo, posterior-
mente haverd os resultados da execucao do classificador em dados reais para verificar a acurécia

das métricas em diferentes organismos.

5.1 Estatisticas

Para identificar snoRNAs H/ACA box e C/D, construiu-se dois conjuntos de dados
diferentes para cada classe de snoRNAs. Para as fases de aprendizado, usou-se um conjunto
de dados como treinamento e o outro para teste usando o método hold-out de separacao e de
validacdo cruzada respectivamente. Cada treinamento foi repetido 10 vezes, e o cdlculo das
métricas, desvio padrao e a média estdo dispostos nas tabelas para cada classe de snoRNA e
método de extracdo utilizado. E de suma importancia saber que estas métricas foram extraidas
dos melhores estimadores, ou seja, do melhor modelo encontrado baseado pelo f1_score em
torno dos treinamentos envolvidos.

Tabela 5.1: Resultados da fase de teste para snoRNAs C/D box: F-score (FSC), Acurécia (Acc),

Recall (REC), Precisdo Média (PRE), Area sob a curva ROC (AUC). A média e desvio padrao
total de cada métrica

Classe (snoRNAs)  Método de extracio FSC(%) ACC(%) REC(%) PRE(%) AUC(%)

C/D box Fourier Real 98.25 98.81 97.26 99.18 99.85
C/D box Fourier Z-Curve 98.81 99.15 98.27 99.35 99.96
C/D box Entropia de Shannon  79.83 87.37 76.47 84.01 93.71
C/D box Entropia de Tsallis 79.34 86.58 78.34 80.09 93.35
C/D box Redes Complexas 99.72 99.79 99.53 99.94 99.98
Média (%) 90,70 94.35 89.97 92.51 97.37

Desvio padrao (%) 10,60 6,73 11,52 9,65 2,72
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Tabela 5.2: Resultados da fase de teste para snoRNAs H/ACA box: F-score (FSC), Acuricia
(Acc), Recall (REC), Precisao Média (PRE), Area sob a curva ROC (AUC).

Classe (snoRNAs) Método de extracio FSC(%) ACC(%) REC(%) PRE(%) AUC(%)

H/ACA box Fourier Real 95.85 98.01 94.08 98.28 98.92
H/ACA box Fourier Z-Curve 96.83 98.49 95.88 98.12 99.46
H/ACA box Entropia de Shannon  40.69 77.84 31.69 58.61 78.92
H/ACA box Entropia de Tsallis 50.41 80.20 44.41 63.21 84.81
H/ACA box Redes Complexas 97.88 98.97 96.41 99.55 99.83
Meédia (%) 76,33 90,70 72,49 83,55 92,38
Desvio padrao (%) 28,31 10,70 31,77 20,74 9,83

5.2 Estudo de caso

Para validar o classificador Random Forest a partir de métodos matematicos, usou-se
os conceitos de validacdo cruzada para separar cada k-dobra ou k-parte em que o valor de k=5.
Para cada dobra, separou-se ambos conjuntos e calculou-se as métricas desejadas (F1, AUC,
PRE, REC, ACC). De acordo com o melhor estimador o modelo foi escolhido e separado para
que seja avaliado em um conjunto de dados reais com sequéncias previstas de vertebrados e
invertebrados, alguns desses organismos foram parcialmente confirmados em experimentos
anteriores sejam em humanos, nematdides, drosofilideos, ornitorrincos, galinhas e leishmania.
Todas essas sequéncias foram extraidas do artigo ARAUJO (2017) que fora consumido como
base comparativa de resultados.

Em ARAUJO (2017), o autor consumiu os conjuntos de validacdo dos artigos referidos
na listagem abaixo usando o snoReport 2.0, software do qual usa previsdo de estrutura secunddria
de RNA para identificar as duas classes de snoRNAs (H/ACA box) e (C/D box):

1. YANG et al. (2006) que usa o snoSeeker, um método baseado em modelos proba-
bilisticos, emparelhamento de segmentos do genoma, para encontrar SnoRNAs em

equéncias genéticas de Homo Sapiens.

2. Do trabalho de SCHMITZ et al. (2008) que busca as sequéncias genéticas em bi-
blioteca de cDNA (combinag¢do de fragmentos clonados de cDNA armazenados em
células hospedeiras) do cérebro do ornitorrinco, gerado a partir de pequenos RNAs

ndo codificadores de proteina.

3. Do artigo cientifico de ZEMANN et al. (2006), que extrai sequéncias genéticas do

conjunto de Caernorhabditis elegans, isto €, um invertebrado da espécie Nematodeo
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para ser usado na combinagdo de triagem de biblioteca de cDNA com estratégias de

busca e andlise computacional para encontrar snoRNAs.

4. De HUANG et al. (2005) o qual perfoma uma andlise de larga escala em Drosophila
melanogaster usando métodos RNomics experimentais € computacionais para identi-

ficar classes de snoRNAs.

5. Por fim, o artigo de LIANG et al. (2007) que utiliza patégenos intimamente relaciona-
dos de Leishmania major para identificar classes de snoRNAs a partir da abordagem

de screening por todo o genoma.
A tabela 5.3 mostra os resultados obtidos pelo snoReport 2.0 de ARAUJO (2017).

Tabela 5.3: Resultados do snoReport nas classes de snoRNAs (C/D box e H/ACA box).

Conjunto

Homo Sapiens  C/D: (21/21)  H/ACA: (28/32)
Platypus C/D: (42/144) H/ACA: (45/73)
Gallus gallus  C/D: (122/132) H/ACA: (66/69)
Nematodes C/D: (32/108) H/ACA: (46/60)
Drosophila C/D: (2/63)  H/ACA: (39/56)
Leishmania C/D: (0/62) H/ACA: (0/37)

Comparando os resultados obtidos em ARAUJO (2017) pelo snoReport 2.0 levando em
conta os conjuntos de validacao dos artigos citados, as tabelas 5.10 mostram o qudo eficaz foi o
preditor em classificar os snoRNAs em C/D box ou H/ACA box tendo como base comparativa o

trabalho mencionado conforme tabela 5.4:

Tabela 5.4: Resultados obtidos no trabalho de ARAUJO (2017) usando o software snoReport 2.0
nas classes de snoRNAs.

Conjunto C/D H/ACA

Homo Sapiens  (21/21)  (28/32)
Platypus (42/144)  (45/73)
Gallus gallus  (112/132) (66/69)
Nematodes (32/108)  (46/60)
Drosophila (2/63) (39/56)
Leishmania (0/62) (0/37)
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Tabela 5.5: Resultados obtidos em nosso classificador usando os métodos de extracdo de teor
matemaético nas classes de snoRNAs.

Tabela 5.6: Método de Fourier Real Tabela 5.7: Método de Fourier Z-Curve
Conjunto C/D H/ACA Conjunto C/D H/ACA
Homo Sapiens  (21/21)  (28/33) Homo Sapiens  (21/21)  (33/33)
Platypus (143/144) (69/73) Platypus (144/144) (72/73)
Gallus gallus  (124/132) (67/69) Gallus gallus  (125/132) (69/69)
Nematodes (106/108)  (60/60) Nematodes (106/108)  (59/60)
Drosophila (63/63)  (55/56) Drosophila (63/63)  (55/56)
Leishmania (54/62)  (36/37) Leishmania (61/62)  (36/37)
Tabela 5.8: Método de Entropia de Shannon Tabela 5.9: Método de Entropia de Tsallis
Conjunto C/D H/ACA Conjunto C/D H/ACA
Homo Sapiens  (21/21)  (18/33) Homo Sapiens  (19/21)  (27/33)
Platypus (128/144) (30/73) Platypus (127/144) (52/73)
Gallus gallus  (109/132) (24/69) Gallus gallus  (114/132) (24/69)
Nematodes (73/108)  (13/60) Nematodes (83/108)  (17/60)
Drosophila (46/63) (8/56) Drosophila (49/63)  (30/56)
Leishmania 45/62)  (17/37) Leishmania 54/62)  (21/37)

Tabela 5.10: Método de Redes Complexas.

Conjunto C/D H/ACA

Homo Sapiens  (21/21)  (33/33)
Platypus (144/144) (73/73)
Gallus gallus  (127/132) (69/69)
Nematodes (107/108)  (60/60)
Drosophila (62/63)  (56/56)
Leishmania (61/62)  (37/37)

Usando o método da Transformagdo de Fourier com o mapeamento numérico de repre-

sentacdo Real na classe de snoRNAs C/D box, 96.79% das sequéncias foram encontradas. Na
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classe de snoRNAs H/ACA box, o classificador encontrou 94.81% das sequéncias.

Com o método da Transformagdo de Fourier com o mapeamento numérico de representa-
cdo Z-curve na classe de snoRNAs C/D box, 98.49% das sequéncias foram encontradas. Na
classe de snoRNAs H/ACA box, 98.78% das sequéncias foram encontradas.

Ja com o método de Entropia de Shannon na classe de snoRNAs C/D box, 76.79%
das sequéncias foram encontradas, tendo essa defasagem na estimativa em comparacao com 0s
métodos de Fourier. Na classe de snoRNAs H/ACA box, apenas 35.67% das sequéncias foram
encontradas, tendo o pior resultado entre os outros métodos relatados.

Na Entropia de Tsallis, o método conseguiu encontrar 82.26% das sequéncias de
organismos vertebrados e invertebrados para a classe de snoRNAs C/D box. Na classe de
snoRNAs H/ACA box, 58.84% das sequéncias foram encontradas.

Por fim, o método de Redes Complexas na classe de snoRNAs C/D box encontrou
98.49% das sequéncias. Na classe de snoRNAs H/ACA box, 99.69% das sequéncias foram
encontradas.

Separadamente, em resumo, o classificador foi eficiente em identificar os organismos
vertebrados e invertebrados do conjunto de valida¢ao. Considerando que o total de sequéncias
da classe snoRNAs C/D box de organismos vertebrados € 297 e invertebrados é 233 e para a
da classe snoRNAs H/ACA box é 175 e 153 respectivamente, € evidente que os algoritmos de
Fourier e o de Redes Complexas foram consideravelmente significativos na classificagdo tendo
uma acurdcia maior que 90% em ambas predi¢des das duas classes de snoRNAs. Ainda que os
métodos de Entropia ndo foram tao eficientes, para a classe snoRNAs C/D box conseguiram ter
uma eficiéncia em torno dos 80% de acuricia,

As tabelas 5.12 e 5.13 mostram o diagndstico da quantidade de sequéncias encontra-
das por método de extracdo de caracteristicas em organismos vertebrados e invertebrados em

comparacdo com a tabela 5.11.

Tabela 5.11: Quantidade de sequéncias encontradas usando o snoReport 2.0 no trabalho de

ARAUJO (2017).
Ferramenta C/D  Acuracia (C/D) H/ACA Acuracia (H/ACA)
snoReport 2.0 (vertebrados) 175 58.92 139 79.88

snoReport 2.0 (invertebrados) 34 14.59 85 55.55
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Tabela 5.12: Quantidade de sequéncias encontradas por método de extracdo de caracteristicas em
organismos vertebrados

Método C/D Acuricia (C/D) H/ACA  Acurécia (H/ACA)
Fourier Real 288 96.96 161 96.56
Fourier Z-Curve 291 97.97 174 99.14
Entropia de Shannon 250 84.17 84 67.38
Entropia de Tsallis 255 85.85 128 77.68
Redes Complexas 292 98.31 175 98.71

Tabela 5.13: Quantidade de sequéncias encontradas por método de extracéo de caracteristicas em
organismos invertebrados

Método C/D Acuracia (C/D) H/ACA Acuracia (H/ACA)
Fourier Real 225 92.0 150 98.03
Fourier Z-Curve 231 99.42 150 98.03
Entropia de Shannon 157 48.0 65 42.48
Entropia de Tsallis 181 73.14 88 57.51
Redes Complexas 230 100.0 152 99.34

5.3 Discussao

Neste trabalho, construiu-se um conjunto de dados pré-processado usando uma estratégia
de filtracdo de dados no intuito de remover a redundancia entre eles, além de implementar
um algoritmo de embralhamento do sequencial genético para produzir o conjunto negativo.
Refinou-se a fase de treinamento do método Random Forest escolhendo cuidadosamente os
parametros do classificador Random Forest usando pesquisas de grade (funcao GridSearchCV).
Diferentes métodos de extracdo de caracteristicas de cunho matemético foram aplicados com
a finalidade de verificar a consisténcia dos algoritmos na classificacdo de snoRNAs. Diversas
métricas de avaliacao foram inclusas para aprecia¢do de acurdcia do modelo preditivo de forma
geral. Estes procedimentos permitem avaliar a perfomance do classificador ao longo do processo
excessivo e extenso de aprendizado de maquina os quais configuram as estimativas de snoRNAs
no modelo pré-estabelecido de entrada.

Percebe-se que nos resultados alcancados, os algoritmos de extragdo de Fourier com o

mapeamento numérico Real e Z-curve tiveram um destaque atingindo uma propor¢ao maior que
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90% em todas as medidas de desempenho apresentadas tanto para snoRNAs C/D box quanto
para snoRNAs H/ACA box permitindo-nos ter alta taxa de qualidade em cada previsdo. Assim
como os algoritmos de Fourier tiveram tal atencao, o algoritmo de Redes Complexas atingiu uma
taxa similar em consonéncia com os resultados de Fourier, demonstrando serem 6timos métodos
de extracdo de caracteristica para o algoritmo Random Forest.

Embora os algoritmos citados tenham sido efetivos na classificagdo, os de natureza
entropica nao foram efetivos na predi¢do atingindo um F-score em torno de 80% na predicao de
snoRNAs C/D box e aproximadamente 45% na predi¢cao de snoORNAs H/ACA box. Embora a
curva ROC AUC apresente um alto indice de confiabilidade exibindo uma porcentagem quase
maior que 80%, ainda assim o algoritmo mostrou ser insuficiente em predizer as amostras.

Vale ressaltar que, segundo ARAUJO (2017), muitas sequéncias usadas para validagao
ainda ndo foi experimentalmente validadas, e talvez alguns deles possam ser falsos positivos, ou
nao sao representantes dos SnoORNAs candnicos (como os snoRNAs na leishmania).

Outra observac¢do importante é que a validagdo envolveu apenas as amostras positivas de
dados e portanto € crucial fazer uma avaliacao negativa envolvendo também o conjunto negativo
para que o algoritmo de classificagdo possa ter mais trabalho em classificar os organismos
vertebrados e invertebrados.

Apesar disso, ainda que a fase de treinamento nao tenha sido composto pelo conjunto
negativo, o classificador identificou 96.60% snoRNAs C/D box e 96.03% snoRNAs H/ACA box
nos organismos vertebrados e invertebrados usando o método de Fourier Real enquanto o método
de Fourier Z-Curve encontrou 98.49% snoRNAs C/D box e 98.78% snoRNAs H/ACA box. O
algoritmo de Redes Complexas identificou 98.49% snoRNAs C/D box e 99.69% snoRNAs
H/ACA box nos organismos vertebrados e invertebrados.

Portanto, o classificador € eficiente nos métodos de extracido de Fourier e Redes Comple-
xas para identificar ambas as classes de snoRNAs e pode ser usado para organismos diferentes,

sendo vertebrados ou invertebrados, com alta qualidade de previsao.
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Conclusao

Essa metodologia adotada pelo modelo de AM em modificar e rotular a informagao
nao estruturada em valores continuos e discretos contribui para compreensao e visualizacao de
cada aspecto presente, mesmo que nao tao "visivel", das estruturas gendmicas espalhadas em
organismos vivos. Na propor¢cdo em que o avango cientifico na drea de Inteligéncia Artifical vém
ganhando forgas, novas abordagens sao constatadas no meio em torno dos processos de extracoes
de caracteristicas, sejam eles de natureza biolégica, matematica e/ou hibrida. E expressivo
e relevante compreender como cada algoritmo de extra¢do se comporta diante a classificacao
bindria de sequéncias gendmicas para que abra espago para elucidagdo do genoma em um espectro
cientifico que ird proporcionar descobertas de novas doengas, novos padrdes de proteinas e na
criacao de remédios contra estas novas doencas. Entender um padrao e correlaciona-lo a uma
classe, ou melhor, conseguir categorizar um grupo no mundo biolégico ndo é uma tarefa simples,
tanto que diferentes abordagens sdo disseminadas porém, nem todas sdo eficazes o suficiente
para serem relevantes.

O estudo de novos métodos, principalmente os de cardter matematico, demonstrou ser
promissor diante da constatacdo e validagdo dos experimentos apresentados em torno destes
algoritmos de teor matematico. Em particular, o algoritmo de transformacdo numérica de
Fourier e o algoritmo de Redes Complexas que revelaram uma taxa significativa nas métricas de
avaliacdo tornando-se expressivos na classificacdo de pequenos RNAs nucleolares (snoRNAs),
em exclusivo as classes C/D box e H/ACA box na medida em que reconhece o conjunto e
adquire conhecimento sobre as features no processo preditivo. Ainda que solidificado em um
Unico algoritmo de classificacdo (Random Forest), os algoritmos de extracdo provaram serem
capazes de traduzir a informagao ndo descritiva das sequéncias genéticas em uma amostragem
descriciondria sobre os snoRNAs para que o classificador possa designar cada caracteristica
as sub-arvores do Random Forest e aperfeicod-las com seus hiperparametros. No fim, as suas
tomadas de decisdao sucedeu um percentual maior que 90% de acuricia no estigio de validagcao
do conjunto real de dados.

Para trabalhos futuros, uma ideia seria incluir novos conjuntos de dados para diferentes
tipos de organismos (nao apenas aqueles que foram citados nos resultados) e comparar as métricas

do classificador Random Forest usando diferentes métodos de aprendizado de maquina (por
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exemplo, SVM, K-Nearest Neighbor (KNN) ou até mesmo o EDeN que € baseado no conceito
do KNN mas para grafos) pois pode ser que encontrem caracteristicas intrinsecas ou mesmo
prever novos snoRNAs. Poderia também treinar os dados utilizando outros hiperparametros para
os classificadores, sempre analisando a melhor abordagem para aquele determinado conjunto
e evitando o overfitting. Outra sugestdo € se beneficiar do classificador para a construgcdo
de uma ferramenta de identificacdo de snoRNAs em genomas. (identificacio seria encontrar
os candidados a snoRNAs no genoma e usar o classificador logo em seguida). Além disso,
como mencionado no tépico de Discussdo, € essencial fazer uma avaliagdo negativa envolvendo
também amostras negativas no conjunto de validagdo para que o algoritmo de classificacdo possa

ter mais trabalho em classificar os organismos vertebrados e invertebrados.



72
Referéncias

AL-MASRI, A. How Does Back-Propagation in Artificial Neural Networks Work? 2019.

ALLALL E. et al. Machine learning applications in RNA modification sites prediction.
Computational and Structural Biotechnology Journal, [S.1.], v.19, p.5510-5524, 2021.

AOKI, G.; SAKAKIBARA, Y. Convolutional neural networks for classification of alignments of
non-coding RNA sequences. Bioinformatics, [S.1.], v.34, n.13, p.i237-i244, 06 2018.

ARAUJO, J. V. de. Identificagdo de snoRNAs usando aprendizagem de maquina.
Bioinformatics, [S.1.], p.1-105, 06 2016.

ARAUJO, J. V. de. SnoReport 2.0: new features and a refined support vector machine to
improve snorna identification. BMC Bioinformatics, [S.1.], p.1-14, 11 2017.

BONIDIA et al. Feature extraction approaches for biological sequences: a comparative study of
mathematical features. Briefings in Bioinformatics, [S.1.], v.22, n.5, 02 2021.

BONIDIA et al. MathFeature: feature extraction package for dna, rna and protein sequences
based on mathematical descriptors. Briefings in Bioinformatics, [S.1.], v.23, n.1, 11 2021.
bbab434.

CALDARELLLI, G. Scale-Free Networks: complex webs in nature and technology. [S.1.]:
Oxford University Press, 2007.

CHAKRAVORTY, N. Non-coding RNAs: the silent regulators of health and diseases. In:
REPORTS, M. B. (Ed.). . [S.1.]: SpringerLink, 2022.

CHATTERIEE, S. What is Feature Extraction? Feature Extraction in Image Processing.
2022.

CHEN, W. et al. iRNA-Methyl: identifying n6-methyladenosine sites using pseudo nucleotide
composition. Analytical Biochemistry, [S.1.], v.490, p.26-33, 2015.

COSTA, F,; GRAVE, K. D. Fast Neighborhood Subgraph Pairwise Distance Kernel. In:
INTERNATIONAL CONFERENCE ON INTERNATIONAL CONFERENCE ON MACHINE
LEARNING, 27., Madison, WI, USA. Proceedings... Omnipress, 2010. p.255-262.
(ICML’10).

COURONNE et al. Random forest versus logistic regression: a large-scale benchmark
experiment. BMC Bioinformatics, England, v.19, n.1, p.270, July 2018.

DEMSAR, J.; ZUPAN, B. Hands-on training about overfitting. PLoS Comput. Biol., [S.I.], v.17,
n.3, p.e1008671, Mar. 2021.

DERNONCOURT, F. Interpreting the AUROC. 2015.

DIECI, G. et al. Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics,
[S.1.], v.94, n.2, p.83-88, 2009.

DORING, M. Interpreting ROC Curves, Precision-Recall Curves, and AUCs. 2018.



REFERENCIAS 73

GOLDSTEIN-GREENWOOD, J. ROC Curves and AUC for Models Used for Binary
Classification. 2022.

GUQO, Y. Cross-Validation and Hyperparameter Tuning. 2021.

GUSIC, M.; PROKISCH, H. ncRNAs: new players in mitochondrial health and disease? In:
GENET, F. (Ed.). . [S.1.]: frontiers in Genetics, 2020.

HENNIG, M. et al. Introduction of a time series machine learning methodology for the
application in a production system. Advanced Engineering Informatics, [S.1.], v.47, p.101197,
2021.

HEYNE, S. et al. GraphClust: alignment-free structural clustering of local rna secondary
structures. Bioinformatics, [S.1.], v.28, n.12, p.i224-i232, 06 2012.

HUANG, Z. hao et al. snoRNAs: functions and mechanisms in biological processes, and roles in
tumor pathophysiology. In: DISCOVERY, C. D. (Ed.). . [S.L.]: Nature, 2022.

HUANG, Z.-P. et al. Genome-wide analyses of two families of snoRNA genes from Drosophila
melanogaster, demonstrating the extensive utilization of introns for coding of snoRNAs. RNA,
[S.1.], v.11, n.8, p.1303-1316, Aug. 2005.

KARACA, Y.; MOONIS, M. Chapter 14 - Shannon entropy-based complexity quantification of
nonlinear stochastic process: diagnostic and predictive spatiotemporal uncertainty of multiple
sclerosis subgroups. In: KARACA, Y. et al. (Ed.). Multi-Chaos, Fractal and Multi-Fractional
Artificial Intelligence of Different Complex Systems. [S.1.]: Academic Press, 2022.
p.231-245.

KITCHENHAM, B.; BRERETON, P. A systematic review of systematic review process
research in software engineering. Information and Software Technology, [S.1.], v.55, n.12,
p.2049-2075, 2013.

KOSLICKI, D. Topological entropy of DNA sequences. Bioinformatics, [S.1.], v.27, n.8,
p.1061-1067, 02 2011.

LIANG, X.-H. et al. Genome-wide analysis of C/D and H/ACA-like Small nucleolar RNAs in
Leishmania major indicates conservation among trypanosomatids in the repertoire and in their
rRNA targets. Eukaryot. Cell, [S.1.], v.6, n.3, p.361-377, Mar. 2007.

LIMA, A. M.; PORTILLO, H. A. del. Computational methods in noncoding RNA research. In:
MATHEMATICAL BIOLOGY, J. of (Ed.). . [S.L.]: SpringerLink, 2007.

LYASHENKO, V. Cross-Validation in Machine Learning: how to do it right. 2023.

MALADKAR, K. Overview Of Convolutional Neural Network In Image Classification.
2018.

MATA, A. S. d. Complex Networks: a mini-review. Brazilian Journal of Physics, [S.1.], v.50,
n.5, p.658-672, Oct 2020.

MENDIZABAL-RUIZ, G. et al. On DNA numerical representations for genomic similarity
computation. PLoS One, United States, v.12, n.3, p.e0173288, Mar. 2017.



REFERENCIAS 74

MENDIZABAL-RUIZ, G. et al. On DNA numerical representations for genomic similarity
computation. PLoS One, United States, v.12, n.3, p.e0173288, Mar. 2017.

MITCHELL, T. M. Machine Learning. 1.ed. USA: McGraw-Hill, Inc., 1997.
MITTAL, A. Machine Learning Process and Scenarios. 2017.
MiLLER, A. C. Data Splitting Strategies. 2020.

NAVARIN, N.; COSTA, F. An efficient graph kernel method for non-coding RNA functional
prediction. Bioinformatics, [S.1.], v.33, n.17, p.2642-2650, 05 2017.

PANT, A. Workflow of a Machine Learning project. 2019.

PAYNE, S. Chapter 3 - Virus Interactions With the Cell. In: PAYNE, S. (Ed.). Viruses. [S.L]:
Academic Press, 2017. p.23-35.

PRAMODITHA, R. Addressing Overfitting 2023 Guide — 13 Methods. 2022.

PRUSTY, S.; PATNAIK, S.; DASH, S. K. SKCV: stratified k-fold cross-validation on ml
classifiers for predicting cervical cancer. Frontiers in Nanotechnology, [S.1.], v.4, 2022.

RABELLO, E. B. Cross Validation: avaliando seu modelo de machine learning. 2019.
RANA, J.; VAISLA, D. K. Introduction To Bioinformatics. [S.1.: s.n.], 2012. p.11-18.
RFAM. Family: snord33 (rf00133). 2023.

RFAM. Family: snora26 (rf00133). 2023.

SANTOS, V. S. dos. Aminoacidos. 2019.

SCHADE, G. Azure Machine Learning. 2018.

SCHMITZ, J. et al. Retroposed SNOfall-a mammalian-wide comparison of platypus snoRNAs.
Genome Res., [S.1.], v.18, n.6, p.1005-1010, June 2008.

SCHONLAU, M.; ZOU, R. Y. The random forest algorithm for statistical learning. The Stata
Journal, [S.1.], v.20, n.1, p.3-29, 2020.

SEMMLOW, J. Chapter 3 - Fourier Transform: introduction. In: SEMMLOW, J. (Ed.). Signals
and Systems for Bioengineers (Second Edition). Second Edition.ed. Boston: Academic Press,
2012. p.81-129. (Biomedical Engineering).

SETUBAL, J. C.; MEIDANIS, J. Introduction to computational molecular biology. In:
OMNIPRESS. Anais... [S.L.: s.n.], 1997.

SHAIKH, R. Cross Validation Explained: evaluating estimator performance. 2018.

SZCZEANIAK, M. W. et al. Towards a deeper annotation of human IncRNAs. Biochimica et
biophysica acta. Gene regulatory mechanismes, [S.1.], v.1863, n.4, p.194385, April 2020.

TORRES-GARCIA, A. A. et al. Chapter 4 - Pre-processing and feature extraction. In:
TORRES-GARCI{A, A. A. et al. (Ed.). Biosignal Processing and Classification Using
Computational Learning and Intelligence. [S.1.]: Academic Press, 2022. p.59-91.



REFERENCIAS 75

VIEIRA, L. M. et al. PlantRNAgnif fer : asvm — basedwork flowtopredictlongintergenicnon —
codingrnasinplants Non-Coding RNA, [S.[.],v.3,n.1,2017.

WANG, Y. et al. Computational identification of human long intergenic non-coding RNAs using
a GA-SVM algorithm. Gene, [S.1.], v.533, n.1, p.94-99, 2014.

GARGAUD, M. et al. (Ed.). Watson—Crick Pairing. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011. p.1775-1776.

WURTZ, R. Recounting the impact of Hubel and Wiesel. The Journal of Physiology, [S.1.],
v.587, 2009.

YANG, J.-H. et al. snoSeeker: an advanced computational package for screening of guide and
orphan snoRNA genes in the human genome. Nucleic Acids Res, England, v.34, n.18,
p.5112-5123, Sept. 2006.

YIN, C.; YAU, S. S.-T. A Fourier characteristic of coding sequences: origins and a non-fourier
approximation. J Comput Biol, United States, v.12, n.9, p.1153-1165, Nov. 2005.

ZACHARY, W. W. An Information Flow Model for Conflict and Fission in Small Groups.
Journal of Anthropological Research, [S.1.], v.33, n.4, p.452-473, 1977.

ZEMANN, A. et al. Evolution of small nucleolar RNAs in nematodes. Nucleic Acids Res.,
[S.1.], v.34, n.9, p.2676-2685, May 2006.

ZHANG, J. Dive into Decision Trees and Forests: a theoretical demonstration. , [S.L.], p.44,
01 2021.



	IFB tcc Template (ABNT)
	IFB tcc Template (ABNT)
	IFB tcc Template (ABNT)
	Introdução
	Formulação do problema
	Objetivos
	Objetivos gerais
	Objetivos específicos


	Referencial teórico
	Bioinformática
	Ácidos nucleicos
	Mecanismo molecular e síntese protéica
	ncRNAs
	snoRNAs

	Machine learning
	Etapas do Machine Learning
	SVM
	CNN
	EDeN
	Random Forest

	Extração de Características
	Transformação Numérica de Fourier (Real e Z-Curve)
	Entropia (Shannon e Tsallis)
	Redes Complexas

	Overfitting (Sobre-ajuste)
	Cross-Validation (Validação Cruzada)
	Métricas de avaliação

	Revisão da literatura
	Questões de pesquisa
	Estratégia de busca
	Critério de inclusão e exclusão
	Análise e discussão das literatuas
	Conclusão dos resultados apresentados na análise

	Projeto
	Coleta de dados
	Pré-processamento de dados
	Extração
	Treinamento
	Estudo de caso: classificação de snoRNAs em conjunto de dados encontrados na literatura

	Resultados
	Estatísticas
	Estudo de caso
	Discussão

	Conclusão
	Referências


