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Resumo

O número de sequências biológicas disponíveis aumentou significativamente nos últimos anos
devido a várias descobertas científicas sobre o código genético que compõe os seres vivos, criando
um enorme volume de dados. Por consequência, novos métodos computacionais foram moldados
para analisar e extrair informações dessas sequências genéticas. Os métodos de aprendizado
de máquina (AM) têm mostrado ampla aplicabilidade em bioinformática e demonstrou ser
imprescendível para a extração de informações úteis das estruturas secundárias dos genomas
ao aperfeiçoar suas técnicas com base no arquétipo matemático em contraste com o modelo
padrão biológico de análise. Diante disso, este trabalho visa analisar os modelos matemáticos
de extração de características, principalmente as técnicas de extração que demonstraram ser
eficientes na classificação de snoRNAs C/D box em organismos vertebrados e invertebrados com
um F-score de 98% e na classificação de snoRNAs H/ACA box com um F-score de 95%. Os
algoritmos como os da Transformação Numérica de Fourier e de Redes Complexas atingiram
uma taxa maior que 90% na classificação de snoRNAs C/D box e H/ACA box em sequências
genéticas de Homo Sapiens, Platypus, Gallus gallus, Nematodes, Drosophila e Leishmania

demonstrando ser promissor nas moléculas de RNAs não-codificadores (ncRNA) da classe de
snoRNAs.

Palavras-chave: RNAs não codificadores, snoRNAs, Aprendizagem de Máquina, Modelos
matemáticos de extração de características, classificação de sequências biológicas, C/D box,
H/ACA box, Random Forest



Abstract

The number of biological sequences available has increased significantly in recent years due
to several scientific discoveries about the genetic code that composes living beings, creating a
huge volume of data. Consequently, new computational methods were shaped to analyze and
extract information from these genetic sequences. The learning methods (AM) have shown wide
applicability in bioinformatics and proven to be essential for the selection of useful information
from the secondary structures of genomes by perfecting his techniques based on the mathematical
archetype in contrast to the model biological standard of analysis. Therefore, this work aims to
analyze the mathematical models for feature extraction, mainly extraction techniques that were
verified efficient in classifying C/D box snoRNAs in vertebrate and invertebrate organisms with
an F-score of 98% and in classifier snoRNAs as H/ACA box with an F-score of 95%. Algorithms
such as Fourier Numerical Transformation and Complex Networks reached a greater than 90%
rate in classifying C/D box and H/ACA box snoRNAs in genetics sequences of Homo Sapiens,
Platypus, Gallus gallus, Nematodes, Drosophila and Leishmania proving to be promising in
non-coding RNA (ncRNA) molecules of the class of snoRNAs.

Keywords: non-coding RNAs, snoRNAs, Machine Learning, mathematical models for feature
extraction, biological sequences classification, C/D box, H/ACA box, Random Forest
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1
Introdução

A expansão do Aprendizado de Máquina (AM) e de técnicas biológicas para a predição
de estruturas protéicas e genômicas e também para o diagnóstico de doenças, trouxe um resultado
significado no que tange a identificação de padrões e características em RNAs não-codificadores
(ncRNAs). De acordo com BONIDIA et al. (2021a), existem aplicações modernas que extraem
propriedades biológicas relevantes para o estudo dessas moléculas como quadro de leitura aberto
(ORF), o uso da frequência de triplets (nucleotídeos "trigêmeos"adjacentes) e a porcentagem
de conteúdo GC. A aplicabilidade de cunho biológico, apesar de expressivo, dificilmente tem
reutilização ou adaptação para problemas específicos tal como classificar as classes de RNAs
não-codificadores (ncRNAs).

Um exemplo disso é a classe de pequenos RNAs nucleolares (snoRNAs) que podem ser
divididos em duas classes: C/D box e H/ACA box. Em uma sequência de ncRNA, através da
extração de características da estrutura secundária, em conjunto com técnicas de aprendizado
supervisionado, auxiliam na identificação das classes C/D box e H/ACA box snoRNAs, como
visto na dissertação de ARAUJO (2017).

A construção de um modelo preditivo devido às limitações dos experimentos manuais
no laboratório a fim de otimizar o desempenho dos modelos atuais de aprendizado de máquina
também inclui uma representação matemática das sequências biológicas por meio do mapeamento
numérico e a transformação de Fourier. A adoção de uma abordagem matemática no contexto de
ncRNAs demonstrou ser promissora nos experimentos de BONIDIA et al. (2021a) ao comparar a
sua eficiência com os algoritmos particulamente de natureza biológica computacional.

O pacote MathFeature, proposto por BONIDIA et al. (2021b), contém 37 features

descritivas para sequencias biologicas. Dentre estas 37, 20 são baseadas em uma analise
matemática incluindo tanto a transformação de Fourier quanto o mapeamento numérico, mas
também a entropia, grafos, redes complexas e CGR (Chaos game representation) em sua
composição. Os casos de estudo alcançaram resultados experimentais significativos.
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1.1 Formulação do problema

A extração de características busca gerar um vetor de características para uma determi-
nada estrutura baseado no treinamento intensivo do modelo. A busca por técnicas de AM capazes
de identificar as características de estruturas secundárias de RNAs tornou-se fundamental ao
longo dos últimos anos devido a grande quantidade de dados sobre o conteúdo genético.

Os métodos tradicionais de extração de características do AM nem sempre conseguem
determinar um modelo eficaz que consiga evitar a perda de informações da estrutura, um bom
exemplo disso é para as classes de snoRNAs. Para ilustrar a ideia, o estudo de BONIDIA et al.
(2021a), é relatado que a técnica ORF, cuja é bastante aplicada no meio biológico para leitura
sequencial do códon, retornou uma pontuação inferior a 0,009 para classificar o RNA circular de
outros tipos de lncRNAs.

Além desse fato, os autores de BONIDIA et al. (2021b) mostraram que a eficiência de
algoritmos para classificação de classes de lncRNAs demonstraram amplo proveito nos estudos
de caso obtendo um desempenho entre 0.6350–0.9897 de eficácia na fase de avaliação, o que é
extremamente vantajoso para a classificação de lncRNAs.

Diante disso, a questão norteadora do trabalho é assumida na hipótese a seguir:

■ Hipótese - Os métodos matemáticos, apesar de generalistas, são bons o suficiente
como os biológicos para classificar as duas classes de snoRNAs: H/ACA box e C/D

box.

Pretende-se analisar e fundamentalizar a hipótese baseado nos resultados obtidos de
experimentos em casos de testes.

1.2 Objetivos

1.2.1 Objetivos gerais

Este trabalho tem como objetivo geral a análise de modelos matemáticos de extração de
características para as classes de snoRNAs C/D box e H/ACA box.

1.2.2 Objetivos específicos

1. Realizar a coleta e tratamento de dados de snoRNAs para a criação do conjunto de
dados de treinamento e teste;

2. Usar um algoritmo de extração de features com abordagem matemática como a
transformação de Fourier, mapeamento numérico, entropia (Shannon e Tsallis), redes
complexas, EDeN e/ou etc;

3. Extrair as features a partir de modelos matemáticos de ambas as classes de snoRNAs
(H/ACA box e C/D box);
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4. Avaliar o desempenho de diferentes técnicas de extração de características no algo-
ritmo Random Forest;

5. Avaliar o performance dos melhores modelos gerados em sequências identificadas na
literatura;

Os capítulos estão divididos em torno do referencial teórico, revisão da literatura, ca-
pítulo de projeto, resultados e conclusão. O referencial teórico contextualizará, na seção de
Bioinformática, o que são moléculas de RNA, o mecanismo molecular e sua síntese proteíca e
explicará sobre os tipos de ncRNAs, dando ênfase na família de snoRNAs.

Ainda no referencial teórico, haverá uma seção específica para descrever o conceito de
AM e os algoritmos de aprendizado supervisionado ou não-supervisionado. Será destacado os
algoritmos SVM, CNN, EDeN e Random Forest e o seu funcionamento em torno dos diversos
problemas de classificação e regressão.

Em sequência, os métodos de extração de características de natureza matemática serão
abordados como as transformações numéricas de Fourier, as entropias de Tsallis e Shannon
e as redes complexas. Cada algoritmo tem sua particularidade e importância de atuação na
identificação de atributos das sequências genética, o que será enfatizado nas subseções deste
capítulo.

Após a definição dos algoritmos de extração, será introduzido o conceito de sobre-ajuste
(overfitting), um problema recorrente na classificação que deve ser evitado a todo custo para que
não se tenha resultados adulterados.

Finalmente, a técnica de validação cruzada terá seu destaque pois é um dos métodos
aplicáveis que previne o sobre-ajuste de dados nas etapas de treinamento e testes. Dessa forma,
com os resultados do classificador autênticos, a última seção explica as métricas de avaliação
que serão consumidas para apreciação do modelo.

As revisões de literatura explicam a construção do estado de conhecimento, as questões
de pesquisa que nortearam o trabalho, as estratégias de busca em torno dos bancos de dados
e repositórios, os critérios de inclusão e exclusão de artigos literários e por fim, a análise e
discussão das literaturas que mais tiveram notoriedade como referência a esta monografia.

No capítulo de projeto as etapas de AM serão explicadas detalhadamente conforme
foi empregado no trabalho. Desde a coleta de dados, a etapa de pré-processamento de dados,
extração de características, até treinamento e testes considerando os estudos de caso definidos
em torno da classificação de snoRNAs.

Até que enfim o capítulo de resultados demonstra a eficiência do classificador, as estatís-
ticas minuciosas de cada método de extração na fase de testes, o comparativo entre o software
snoReport 2.0 da literatura de ARAUJO (2017) nas sequências de organismos vertebrados e
invertebrados das classes snoRNAs comentados nas literaturas previstas.
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Referencial teórico

As próximas seções abordarão os principais conceitos sobre cada temática da bioinfor-
mática apontando o campo de pesquisa para os ncRNAs do tipo snoRNAs.

Na primeira seção será discutido sobre a importância da bioinformática na área científica
apresentando o objeto de pesquisa desde os ácidos nucleicos e sua sintese proteica até os ncRNAs
e por fim os snoRNAs da classe C/D e H/ACA.

Na segunda seção será retratado a definição de apredizagem de máquina explicando as
suas características, metodologia, fluxo de trabalho e os principais algoritmos de classificação e
regressão.

A terceira seção será responsável em explicar os algoritmos usados neste trabalho de
extração de característica de natureza matemática (Transformação de Fourier com o mapeamento
numérico Real e Z-Curve, Entropia de Shannon e Tsallis e Redes Complexas)

A quarta seção irá explicar sobre um dos problemas mais comuns no espectro de AM
chamado overfitting. Esta seção irá detalhar a relação causa e consequência do sobre-ajuste e
mostrará as possíveis tomadas de decisão que irão evitar e prevenir que esta situação ocorra no
seu modelo.

A penúltima seção explicará a importância da validação cruzada na fase de treinamento
e de testes na aprimoração do modelo preditivo, a ideia é constatar que o particionamento do
conjunto em pequenas partes influenciará no resultado final do classificador.

Finalmente, na última seção, as métricas de avaliação serão elucidadas. Cada métrica
avalia a acurácia do classificador e em sua maioria utilizam a matriz de confusão como base de
cálculo estatístico. A partir de seus resultados, o modelo preditivo será ponderado.

2.1 Bioinformática

A bioinformática é a área de pesquisa que mescla as ciências biológicas e computacionais
para o gerenciamento computacional de todos os tipos de informações biológicas moleculares,
lidando com a estrutura e os aspectos funcionais dos genes e proteínas. Têm como objetivo
desenvolver técnicas modernas para identificação de características do objeto de análise com o
intuito de expandir a produção de farmacológicos, o descobrimento de vacinas, cura para doenças,



2.1. BIOINFORMÁTICA 18

dentre outros. Os estudos sobre o sequenciamento de moléculas genéticas e a análise sistemática
de cadeias protéicas dos acidos nucleicos (DNAs e RNAs) evidenciaram que existe uma classe
de pequenas moléculas de RNAs que desempenham um papel importante nos processos celulares
RANA; VAISLA (2012).

2.1.1 Ácidos nucleicos

De acordo com SETUBAL; MEIDANIS (1997), ao que tange sobre ácidos nucleicos, são
moléculas formadas por nucleotideos responsáveis por armazenar e transmitir as informações
genéticas necessárias para a produção de proteínas, bem como a transcrição do conteúdo a
partir do processo de reprodução celular. Os seres vivos, em sua composição, contém dois tipos
importantes de ácidos nucleicos: o DNA e o RNA. O DNA (ácido desoxirribonucleico) detém
a função de armazenar e transmitir essas informações enquanto o RNA (ácido ribonucleico)
transcreve-as para formar a síntese protéica.

Na biologia molecular, dois nucleotídeos em fitas complementares de DNA ou RNA que
estão conectados por ligações de hidrogênio são chamados de par de bases nitrogenadas. No
pareamento de bases Watson-Crick canônico no DNA, a adenina (A) forma um par de bases com
a timina (T) usando duas ligações de hidrogênio, e a guanina (G) forma um par de bases com a
citosina (C) usando três ligações de hidrogênio. No pareamento de bases Watson-Crick canônico
no RNA, a timina é substituída por uracila (U) WATSON–CRICK PAIRING (2011). A figura
2.1 demonstra como funciona as ligações entre as bases nitrogenadas.

Figura 2.1: Extraído de SETUBAL; MEIDANIS (1997) para representar as ligações entre as
bases nitrogenadas.

2.1.2 Mecanismo molecular e síntese protéica

O mecanismo celular reconhece o início de um gene ou agrupamento de genes graças ao
promotor, que é uma região antes de cada gene no DNA que serve de indicação ao mecanismo
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celular que um gene está à frente. Tendo reconhecido o início de um gene ou agrupamento de
genes, uma cópia do gene é feita em uma molécula de RNA. Este RNA resultante é o RNA
mensageiro (mRNA) e terá exatamente a mesma sequência que uma das fitas do gene, mas
substituindo a base nitrogenada U por T. Esse processo é chamado de transcrição. O mRNA
resultante será então usado em estruturas celulares chamadas ribossomos para fabricar uma
proteína.

Como o RNA é de fita simples e o DNA é de fita dupla, o mRNA produzido é idêntico em
sequência a apenas uma das fitas gênicas, sendo complementar à outra fita, tendo em mente que
T é substituído por U no RNA. A fita que se parece com o produto de mRNA é chamado de fita
antisense ou codificadora, e a outra é a fita sense ou anticodificação ou então fita molde. A fita
molde é a que realmente é transcrita, pois o mRNA é composto pela união de ribonucleotídeos
complementares a esta fita.

A proteina é uma macromolécula formada por uma cadeia de aminoácidos pareadas
por uma ligações peptídicas que conectam um átomo de carbono pertencente à carboxila a um
ou mais átomos de nitrogênio. Ao efetuar a ligação, uma molécula de água é liberada porque
o oxigênio e o hidrogênio da carboxila se une a um hidrogênio do grupo de amina. Assim, o
que realmente encontramos dentro de uma cadeia polipeptídica é um resíduo do aminoácido
original. As proteínas típicas contêm cerca de 300 resíduos, mas existem proteínas com apenas
100 ou com até 5.000 resíduos SETUBAL; MEIDANIS (1997). A figura 2.2 apresenta alguns
aminoácidos bastante importantes da cadeia polipeptídica.

Figura 2.2: Moléculas de aminoácidos conhecidas. SANTOS (2019)

Portanto, para identificar uma proteína, é necessário decodificar cada aminoácido que ela
contém. E isso é precisamente o que o DNA em um gene faz, usando triplas de nucleotídeos
para especificar cada aminoácido. Cada tripla de nucleotídeos é chamado de códon. As triplas
de nucleotídeos são dados usando bases de RNA em vez de bases de DNA, a razão é que são as
moléculas de RNA que fornecem a ligação entre o DNA e a síntese protéica em um processo
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chamado de tradução. A conexão que designa a síntese protéica é feita entre um códon e o
aminoácido que este códon codifica. Cada molécula de RNA transportador (tRNA) possui, de
um lado, uma conformação que possui alta afinidade por um códon específico e, do outro lado,
uma conformação que liga-se facilmente ao aminoácido correspondente. À medida que o RNA
mensageiro passa o interior do ribossomo, um tRNA correspondente ao códon atual se liga a ele,
trazendo o aminoácido RANA; VAISLA (2012).

Um aspecto do processo de transcrição importante é o conceito de quadro da leitura.
Um quadro de leitura aberto, ou ORF, em uma sequência de DNA é um trecho contíguo dessa
sequência começando no códon inicial, tendo um número inteiro de códons (seu comprimento
é um múltiplo de três) tal que nenhum de seus códons seja um codão de terminação (uma
tripla de nucleótidos que sinaliza a terminação da tradução). Uma das três formas possíveis
de agrupar bases para formam códons em uma sequência de DNA ou RNA. Por exemplo, a
sequência TAATCGAATGGGC pode ser decodificada tomando como códons TAA, TCG, AAT,
GGG, deixando de fora o último C. Outro quadro de leitura seria ignorar o primeiro T e obter
os códons AAT, CGA, ATG, GGC. Ainda outro quadro de leitura produziria os códons ATC,
GAA, TGG, deixando de fora duas bases no início (TA) e duas bases no final (GC) PAYNE
(2017). Visualmente, a imagem 2.3 apresenta a estrutura de um RNA do vírus SARS coronavírus,
mostrando que é possível trocar as bases nitrogenadas se a transcrição para códon não afetar as
suas ligações peptídeas.

Figura 2.3: Um pseudo-nó de RNA direcionando a estrutura ribossômica na síntese protéica.
Extraído de PAYNE (2017)
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2.1.3 ncRNAs

As regiões de proteínas não-codificadas abrangem 98% do genoma humano e caracteri-
zam por ser uma região a qual os RNAs detectados não são codificados a partir da síntese protéica.
Os RNAs não traduzidos em proteínas foram nomeados RNAs não-codificadores (ncRNA) e
foram considerados, a princípio, como um ruído ou subprodutos do fluxo de informação genética
do DNA à proteína. A falta de dados científicos atribuindo funções para a maioria das regiões
não codificantes do genoma reforça a ideia de que essa maioria pode realmente ser descartável.
No entanto, hoje, é conhecido que os ncRNAs estão envolvidos em várias atividades celulares,
como silenciamento de genes, replicação, regulação da expressão gênica, transcrição, estabili-
dade cromossômica, estabilidade de proteínas, translocação e localização, modificação de RNA,
processamento e estabilidade CHAKRAVORTY (2022).

A predição de estruturas conservadas é um fator preponderante para descobrir e caracteri-
zar assinaturas para uma família de RNA específica. Ao tratar sobre ncRNAs, a sua identificação
está estritamente ligada à sua estrutura terciária e, como a estrutura terciária é determinada
pela estrutura secundária, esta última é usada como uma aproximação no estudo de funções
em ncRNAs, para ter uma melhor noção de como é a estrutura de um ncRNA, a figura 2.4
mostra sua composição em forma de grafo. Se a função de um único RNA ou de uma família
não for conhecida, pode-se inferir comparando a estrutura de RNA (ou consenso no caso de
uma família) com um banco de dados de assinaturas estruturais secundárias. A comparação
estrutural pode também ser usada para detectar a ocorrência de diferentes estruturas estáveis
para a mesma molécula (o que pode indicar uma possível mudança na estrutura secundária
impactando diretamente na sua função) para prever e comparar as mutações em uma sequência
de RNA GUSIC; PROKISCH (2020)

Figura 2.4: Estrutura secundária do icd-II ncRNA. Extraída de GUSIC; PROKISCH (2020)
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A designação de famílias de ncRNAs a partir da comparação estrutural secundária de
sequências de ncRNAs, procurando RNAs homólogos a um candidato específico ou que pertence
a uma família de candidatos continua sendo um problema específico da classificação de ncRNAs.
Em tese, a pesquisa de ncRNA envolve três tipos principais de problemas de reconhecimento de
padrões em ncRNas, segundo LIMA; PORTILLO (2007), são eles:

■ Predição da estrutura secundária: O número de estruturas secundárias possíveis
cresce exponencialmente com o comprimento da sequência. A questão é como buscar
uma estrutura neste espaço de solução exponencial para escolher a melhor estrutura.
Quando a estrutura secundária de apenas uma sequência de RNA precisa ser prevista,
apenas métodos iniciais podem ser usado. Se um conjunto de RNAs homólogos
estiver disponível, métodos comparativos podem prever a estrutura de consenso com
mais precisão.

■ Comparação de estrutura secundária: A comparação de estrutura calcula a diferença
entre duas estruturas. A medição é feita calculando a diferença de uma distância
de edição entre essas duas estruturas. A distância de edição depende de quantas
operações de edição são necessárias para transformar uma das estruturas em outra
considerando o custo de cada tipo de operação de edição. O cálculo da distância de
edição está diretamente relacionada à forma como as estruturas são representadas
e em que nível de resolução a comparação é realizada. Três maneiras comuns de
representar estruturas são árvores, cadeias de colchetes e gráficos genéricos. Os
níveis de resolução variam de pares de bases para padrões estruturais como hélices,
loops e multi-loops.

■ Identificação de ncRNAs: A detecção computacional direcionados a famílias de ncR-
NAs usam o máximo possível de peculiaridades. A criação de programas mais gerais
que possam ser treinados para identificar características de uma família específica ou
mesmo de uma única sequência de entrada é um caminho possível para identificação
de famílias. Ainda assim, é desejável procurar novas famílias de genes, o que torna
um problema para os programas de classificação geral de famílias conhecidas.

2.1.4 snoRNAs

Os snoRNAs são uma das mais antigas e numerosas famílias de RNAs não codificantes
(ncRNAs), estão amplamente presentes nos nucléolos das células eucarióticas e têm um cumpri-
mento de 60–300 nt. A principal função dos snoRNAs é guiar a modificação de RNA ribossomal
(rRNA) específica do local. Em contraste, sua organização genômica e estratégias de expressão
são as mais variadas. Aparentemente, as unidades de codificação de snoRNA adotaram, no curso
da evolução, todas as formas possíveis de serem transcritas, proporcionando assim um paradigma
único de flexibilidade de expressão gênica. DIECI et al. (2009)
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Os snoRNAs são codificados principalmente por regiões intrônicas de genes codificadores
de proteínas e não codificadores de proteínas. Normalmente, podem ser classificados em
três grupos: H/ACA box, C/D box e RNAs cajal pequenos (scaRNAs). Para HUANG et al.
(2022), os dois primeiros tipos de snoRNAs participam do processamento de rRNA adicionando
modificações de 2-O-metilação e pseudouridilatação às moléculas de rRNA, respectivamente.
No entanto, um tipo de snoRNAs estão localizados em corpos de Cajal (CBs), eles são chamados
scaRNAs. Eles também seguem a classificação C/D-H/ACA, mas alguns scaRNAs contêm
estruturas C/D e H/ACA. C/D box snoRNAs se ligam a quatro proteínas essenciais – Nop1p,
Nop56p, Nop58p e Snu13p — para gerar pequenas ribonucleoproteínas nucleolar (snoRNPs).
Da mesma forma, os snoRNAs H/ACA box formam snoRNPs funcionais ligando-se a Cbf5p,
Gar1p, Nhp2p e Nop10p.

O comprimento dos snoRNAs da C/D box eucariótica geralmente varia de 70 a 120 nt,
como pode ser relatado pela figura 2.5. Esses snoRNAs contêm duas sequências conservadas:
a C box e a D box. A C box consiste nos nucleotídeos RUGAUGA, que estão localizados na
extremidade 5’ da molécula de snoRNA. Em contraste, a D box está localizada na extremidade
3’ e consiste nos nucleotídeos CUGA. Juntos, esses elementos dependem do par de bases para
dobrar em uma estrutura chamada kink-turn. Essa estrutura é reconhecida pelo Snu13p, que
então recruta Nop1p (também chamado fibrilarina [FBL]), Nop58p e Nop56p para modificação
de 2’-O-metilação DIECI et al. (2009).

Figura 2.5: Estrutura secundária do SNORD33, que pertence ao grupo C/D box. Imagem extraída
de RFAM (2023a).

Os snoRNAs H/ACA box contêm a região chamada de bolsas de pseudouridilatação em
que há resíduos de uridina no substrato RNA isomerizados. H/ACA box snoRNPs se ligam a
Cbf5p, Nop10p, Gar1p e Nhp2p, entre os quais Cbf5p atua como a proteína catalítica envolvida
na pseudouridilatação. Os snoRNAs eucarióticos H/ACA box contêm duas sequências: a H box
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e a ACA box, localizadas abaixo do primeiro e segundo hairpin, respectivamente. DIECI et al.
(2009). Um exemplo de snoRNA H/ACA box é visto na imagem 2.6

Figura 2.6: Estrutura secundária do SNORA26, que pertence ao grupo H/ACA box. Imagem
extraída de RFAM (2023b).

Os métodos de AM são frequentemente usados na identificação e classificação de dife-
rentes famílias de ncRNAs como snoRNAs. Uma avaliação sistemática de AM nos snoRNAs
requer um aprendizado supervisionado em torno das classes para que possa extrair os atributos,
chamados de features, significativos do material genético. Essas features serão consumidas por
um classificador, em outras palavras, por um algoritmo de AM, que será responsável de predizer,
avaliar e validar o modelo preditivo encontrado. Para aprofundar nesses métodos de identificação
e classificação, é necessário compreender como funciona o workflow do Machine Learning (ML),
os algoritmos de aprendizado supervisionado, os algoritmos de extração de características (em
priori os de gênero matemático), como funciona a avaliação métrica de um classificador e as
possíveis consequências que certas escolhas de parâmetro para o algoritmo podem induzir.

2.2 Machine learning

De acordo com ALLALI et al. (2021), o AM é um ramo da inteligência artificial que
envolve a autoaprendizagem do computador para executar tarefas. A seleção de características
no aprendizado de máquina têm um papel significativo no desempenho dos modelos de previsão.
É durante a seleção que a redundância e ruídos são identificados, a remoção do sobre-ajuste é
aplicado, o que implica diretamente no aumento da velocidade de cálculo. Esta etapa crucial é
capaz de definir as características discriminantes do objeto de estudo analisado. Para entender
melhor, MITCHELL (1997) explica o funcionamento do AM sugerindo uma esquematização de
um programa de computador o qual aprende a partir de uma experiência E através de alguma
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classe de tarefas T e uma medida de desempenho P. Vale ressaltar que sua performance para
a tarefa T, medida em P, é aprimorada com a experiência E. Por exemplo, considerando a
aplicabilidade do objeto de estudo da tese, considere que um programa deve classificar uma
determinada sequência de código genético e precisa classificá-lo como um RNA, portanto:

O problema pode ser traduzido para:

■ Tarefa T: Classificar o código genético em DNA ou RNA

■ Medida de desempenho P: Percentual de sequências de RNAs classificadas correta-
mente

■ Experiência E: Um banco de dados de sequências conhecidas de DNAs e de sequên-
cias de RNAs

Dado um conjunto de dados, o algoritmo fará o treinamento a partir das características
(features) predefinidas que descrevem o RNA. A hipótese inicial é que haja uma função f que
consiga ser aplicável à um grupo X de código genético que o caracterize como um RNA. O
algoritmo não retorna uma solução exata, logo, a correlação do resultado é baseado na margem de
erro da função heurística. Todavia, a intenção do aprendizado de máquina é que torne a máquina
consistente ao armazenar a "experiência"ou informação advindas do banco de dados; quanto
mais características estiver disponível para definir o caso de estudo, melhor. A determinação da
acurácia é feita pelo valor resultante do F-score, em termos estatísticos, é a medida de precisão
de um teste, portanto, a escolha do conjunto de dados bem como a preferência do algoritmo
impactam diretamente na sua eficácia HENNIG et al. (2021).

Figura 2.7: Fluxo de trabalho do aprendizado de máquina. Imagem extraída de MITTAL (2017).

A figura 2.7 mostra um simples fluxo de trabalho do aprendizado de máquina, inclusive,
muito utilizado na mineração de dados: na primeira etapa recebe o dado bruto e em seguida passa
para etapa de pré-processamento que filtrará os dados e os limpará deixando-o estruturado, em
sequência o algoritmo escolhido é executado e retornará o modelo candidado para o treinamento
em questão, a verificação do F-score é feito na fase seguinte e o "modelo de ouro", isto é, o grupo
classificado que obteve a maior acurácia é encontrado. HENNIG et al. (2021) O aprendizado
de máquina é dividido em três grupos: aprendizado supervisionado, não supervisionado e
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reforçado. O aprendizado híbrido, por sua vez, combina ambos métodos: supervisionado e não
supervisionado.

No estudo de HENNIG et al. (2021), define-se que o aprendizado supervisionado mapeia
uma entrada para uma saída com base em um conjunto de dados conhecidos, a saída é uma
classe (no caso de classificação) ou um valor (em regressão linear). Na aprendizagem não
supervisionada, os algoritmos construem modelos capazes de descrever os dados e as relações
encontradas sem o uso de rótulos, além de incluir a divisão de dados em grupos (no caso de
agrupamento) e resume a distribuição de dados em densidade estimativa. A aprendizagem por
reforço envolve ações de aprendizagem em vez de classe, e a entrada é mapeada para ações
com base no retorno, logo, é orientada a ação, onde são mantidas as ações que conterem maior
recompensa. Para elucidar, as próximas seções abordarão alguns algoritmos de classificação
importantes como SVM, CNN e Explicit Decomposition with Neighborhoods (EDeN), Random

Forest para ilustrar alguns dos métodos disponíveis do aprendizado de máquina.

2.2.1 Etapas do Machine Learning

As etapas do Machine Learning podem ser divididas em 5 estágios segundo PANT
(2019):

1. Coleta de dados: A máquina de aprendizado inicialmente aprende com os dados que
são fornecidos à ela. A qualidade dos dados que alimenta a máquina determinará a
precisão do modelo preditivo. Dados incorretos ou desatualizados terão resultados
ou previsões erradas que não são relevantes. Portanto, a primeira etapa no processo
de aprendizado de máquina é obter os dados autênticos para construção do conjunto
positivo e negativo, podendo ser adquiridos de bancos de dados existentes ou de
repositórios online, desde que seja de fonte confiável.

2. Pré-processamento de dados: Todos os dados do mundo real geralmente não estão
bem estruturados, redundantes ou não tem informação descricionária. Para explorá-
los no modelo de aprendizado de máquina, é inevitável que haja uma preparação,
limpeza, no intuito de que fique mais claro e objetivo. Essa etapa é crucial no fluxo
de trabalho do ML e também a que leva mais tempo. Os dados podem estar em
qualquer formato: CSV, XML, JSON, etc. Após a conversão para um formato padrão,
é preciso limpá-los. Sendo assim, é fundamental checar se a quantidade de dados
para os conjuntos (positivo e negativo) estão balanceados, se as sequências genéticas
detém tamanhos semelhantes, se o genoma contém apenas bases nitrogenadas, e etc.

3. Extração de característica: A extração de características refere-se ao processo de
transformação de dados brutos em dados numéricos que podem ser processados,
preservando as informações no conjunto de dados original. É uma etapa primordial,
pois o algoritmo de aprendizado de máquina produz melhores resultados com valores
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contínuos e discretos do que diretamente com dados brutos. Escolher um algoritmo
de extração capaz de transcrever os atributos de cada sequência genética é decisivo
acerca o resultado da predição: a eficácia da predição pode variar conforme a técnica
escolhida de extração.

4. Treinamento: A próxima etapa no fluxo de trabalho de aprendizado de máquina
é treinar o modelo. Um algoritmo de ML é empregado no conjunto de dados de
treinamento com o objetivo de aprender e prever certos "comportamentos"baseado
nos valores reais advindos da extração. Esses algoritmos podem se enquadrar em três
grandes categorias: binário, classificação e regressão. Neste trabalho será usado o
algoritmo de classificação.

5. Testes: Depois que o modelo é treinado exaustivamente, o próximo passo é testá-lo
e validá-lo para garantir que eficaz. Usando o conjunto de dados de teste obtido
na etapa 3, é feito a verificação da precisão do modelo obtido. O modelo pode ser
treinado, alterado e aprimorado várias vezes até que os resultados sejam satisfatórios.

Todo o passo-a-passo pode ser descrito pela figura 2.8.

Figura 2.8: Fluxo de trabalho do ML. Imagem extraída de SCHADE (2018).

2.2.2 SVM

As Máquinas de Vetores de Suporte (do inglês, Support Vector Machines - SVMs) é um
método não paramétrico que não é limitado pelo tamanho do conjunto de dados de treinamento.
Essencialmente, o Máquina de vetores de suporte (SVM) gera modelos usados para classificação
e regressão CHEN et al. (2015). Em ambos os casos, se o SVM não for capaz de criar os vetores
de suporte, ele pode construir hiperplanos em uma dimensão alta no espaço euclidiano para que
ele selecione aqueles com maior margem, relacionados aos dados de treinamento VIEIRA et al.
(2017). Nessas circunstâncias, o modelo SVM tenta encontrar uma reta para distinguir os grupos
da entrada do conjunto de dados, como ilustrado pela figura 2.9, excluso os casos em que as
margens não podem ser criadas quando métodos simples de separação linear são usados para
dados não-lineares.
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Com a finalidade de resolver este obstáculo, o SVM usa funções do kernel para aumentar
a dimensão do espaço, de modo que o conjunto de dados possa ser linearmente separável em
dimensões mais altas, como na figura 2.10, o qual o algoritmo divide o plano bidimensional de
forma que separe os vetores de suporte em ambas extremidades da reta.

Figura 2.9: Exemplo de vetores de suporte de 2 dimensões adaptado por VIEIRA et al. (2017).

Figura 2.10: Dados separáveis não lineares em baixa dimensão, mapeados para uma dimensão
mais alta; adaptado por VIEIRA et al. (2017).

Uma noção que é central para a construção do algoritmo de aprendizado do vetor de
suporte é o kernel do produto interno entre um "vetor de suporte"xi e o vetor x extraído do
espaço de entrada. Os vetores de suporte consistem em um pequeno subconjunto dos dados de
treinamento extraídos pelo algoritmo

2.2.3 CNN

O trabalho de Hubel e Wiesel em 1962 sobre a descoberta de atividades elétricas de
neurônios em gatos foi pioneira para o desenvolvimento do método de AM baseada em multica-
madas de neurônios, chamada de rede convolucional neural (CNN) WURTZ (2009).Uma rede
convolucional é um perceptron multicamada projetado especificamente para reconhecer formas
bidimensionais com um alto grau de invariância à tradução, dimensionamento e distorção. Esta
tarefa é aprendida de forma supervisionada por meio da rede cuja estrutura inclui as seguintes
formas de restrições VIEIRA et al. (2017):
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1. Extração de características - Cada neurônio recebe suas entradas sinápticas de um
campo receptivo local na camada anterior, forçando-o a extrair características locais.
Uma vez que um recurso foi extraído, sua localização exata torna-se menos impor-
tante, desde que sua posição em relação a outras características seja aproximadamente
preservada.

2. Mapeamento de extrações - Cada camada computacional da rede é composta de
vários mapas de características, com cada mapa de características na forma de um
plano dentro do qual os neurônios individuais são restringidos a compartilhar o
mesmo conjunto de pesos sinápticos. Esta segunda forma de restrição estrutural tem
efeitos benéficos como a invariância de deslocamento e redução da quantidade de
parâmetros livres recebidos pelos perceptrons.

3. Subamostragem - Cada camada convolucional é seguida por uma camada compu-
tacional que realiza média local e subamostragem, reduzindo a resolução do mapa
de características. Esta operação tem o efeito de reduzir a sensibilidade da saída do
mapa de características para deslocamentos e outras formas de distorção.

A preparação da rede convolucional neural pode ser expressa na imagem 2.11. Desde o
estágio da entrada dos dados até a última etapa da rede, a simplificação da informação anterior
é executada em cada camada (pooling) e sua utilidade é diminuir a quantidade de recursos
agrupados ajudando a reduzir o número de parâmetros necessários nas camadas posteriores.

Figura 2.11: Representação da rede convolucional neural no processamento de imagens (I)
entrada de dados, (II) primeiro estágio, (III) segundo estágio, (IV) classificador de 256 pixels, (V)

saída com 10 pixels totalmente conectada; Imagem extraída de MALADKAR (2018).

A essência da rede neural convolucional é baseada na retropropagação que consiste na
atualização contínua dos pesos para que os neurônios com a maior taxa de erro/perca sejam
minimizados garantindo a consistência do modelo e a acurácia do método. A retropropagação
funciona da seguinte forma: ao adentrarmos ao mapeamento de extrações, é necessário atualizar o
peso de cada sináptico (ligação entre dois neurônios) de forma que aplique em todos os neurônios
das camadas anteriores e para que isso seja implementado, é necessário a função de perca e a de
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hipótese, elas guiarão o modelo pela a rede inteira até que chegamos a uma camada final que
seja utilizável AL-MASRI (2019).

Portanto, conforme o mapeamento de extrações avança, os pesos tendem a diminuir pois
são cálculos a partir da derivada parcial das funções. Consequentemente, o último nó da rede
armazenará o total de perda do modelo que será usado para a avaliação do resultado, percebe-se,
então, que a rede convolucional vai aprendendo a classificar o modelo por treinamento extraindo
suas próprias características esporadicamente.

2.2.4 EDeN

Explicit Decomposition with Neighborhoods (EDeN) é um kernel decomposicional de
grafos baseado no Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) que produz um
subgrafo da estrutura secundária do snoRNAs e produz um conjunto explícito de features usado
para algoritmos de aprendizagem de máquina supervisionados, não-supervisionados ou híbridos
de maneira escalável.

A decomposição de uma sequência genômica em partes de objeto pretende conceber
um kernel local válido entre as subpartes para que seja obtido uma função de similaridade
capaz de decompor exponencialmente se existir um método que enumere os kernels em tempo
polinomial recorrendo a programação dinâmica para tal ato. À medida que a dimensão do
espaço de características torna-se maior, há uma probabilidade de que uma fração das dimensões
não serão correlacionadas com a função de similaridade. Como consequência, mesmo usando
algoritmos de classificação com margem alta, tornam-se obsoletos para determinar uma boa
generalização do modelo. COSTA; GRAVE (2010). A execução do EDeN é exemplificado pela
imagem 2.12.

Figura 2.12: Codificação da estrutura secundária de RNA e as features do kernel do grafo;
Imagem extraída de HEYNE et al. (2012).

Para entender melhor como funciona a tradução da sequência para um grafo, o passo-a-
passo da codificação da estrutura secundária é: (A) A codificação do grafo preserva a informação



2.2. MACHINE LEARNING 31

do nucleotídeo (rótulos do vértice) e os pares de bases (rótulos da borda), aqui representados
com cores diferentes. (B) Vértices adicionais são inseridos para induzir features relacionados
ao empilhamento quádruplo de pares de base (vértices finos de cor cinza no centro de cada
empilhamento de pares). Na parte da direita exemplo de features induzidas pelo kernel do grafo
NSPDK para um par de vértices u,v na distância 3 com raio 0,1,2. Os grafos de vizinhança são
encerrados em trilhas tracejadas.

Em uma conotação matemática, proposto por HEYNE et al. (2012), dado um grafo
G = (V,E), em que V é o conjunto de vértices e o E é o conjunto de arestas. Sendo a distância
de dois vértices u,v denotada por D(u,v) do menor caminho entre eles e o raio r da região do
subgrafo induzido é o conjunto de vértices a uma distância d menor ou igual a r de v. Considere
que Nv,r (G) denota o subgrafo de vizinhança, ou seja, o subgrafo de G enraizado em v induzido
pelo conjunto de vértices. A relação de pares de vizinhança Rr,d é definida como válida quando
a distância entre as raízes de dois subgrafos de vizinhança de raio r é exatamente igual a d.
O kernel de decomposição, portanto, kr,d na relação Rr,d em um NSPDK pode ser definido da
seguinte forma:

K(G,G
′
) =

r∗

∑
r

d∗

∑
d

kr,d(G,G
′
)

�
 �	2.1

Isto significa que o NSPDK decompõe o grafo em pares de subgrafos vizinhos limitando
a soma de kr,d kernels a cada iteração para todos os valores crescentes do parâmetro de raio r e
distância d até um valor máximo dado r∗ e d∗ respectivamente.

2.2.5 Random Forest

O algoritmo Random Forest de AM é um conceito baseado em uma estrutura construída
em árvores a partir da partição recursiva do conjunto de dados de acordo com um critério
pré-estabelecido até que uma condição de parada seja atendida.

As árvores de decisão podem ser designadas para tarefas de classificação categóricas
e/ou contínuas usando uma função de otimização específica para divisão dos nós, como a função
introduzida por Shannon, em 1948, que ficou conhecida por entropia de Shannon: uma fórmula
que calcula a incerteza de ocorrência de determinado evento, dada informação parcial sobre o
sistema TORRES-GARCíA et al. (2022).

E =−
N

∑
i=1

p(xi)log2(p(xi))
�
 �	2.2

onde N é o número de classes distintas e pi é a probabilidade de ocorrência de cada
classe. Este valor é maximizado para obter o máximo de informações em cada divisão da árvore
de decisão.

Ao construir cada sub-árvore em cada divisão, apenas um conjunto determinado de
características são selecionadas e consideradas como candidatas à divisão. Conforme a árvore de
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decisão vai se expandindo e criando sub-árvores, mais dificil é extrair a informação interpretável
de cada nó. Na figura 2.13, as árvores de decisão recebem a feature e definem um cálculo
booleano para identificar qual nó vai receber a entrada desejada.

Figura 2.13: Estrutura simplória de uma Random Forest; Imagem extraída de ZHANG (2021).

A árvore de decisão é formalmente expressa com base nesta função:

T (x) =
J

∑
j=1

γ j1(x ∈ R j)
�
 �	2.3

O número de nós-folha J é geralmente tratado como um hiperparâmetro. E a família
definida {R j}J

j=1 é um particionamento do domínio de x. Cada conjunto R j é parametrizado com
θ j . A função indicadora 1(x ∈ R j) é a função característica do conjunto Ri definido como:

1(x ∈ R j) =

1 if (x ∈ R j)

0 otherwise.

Basicamente, o algoritmo Random forest soma todas as árvores de decisão com alguns
fatores aleatórios. As árvores não apenas extraem algumas amostras do conjunto de treinamento,
mas também fazem parte das amostras de features durante a indução de cada sub-árvore.

O limite do número de características (parâmetro max_features) bem como a quantidade
de sub-árvores na árvore de decisão (parâmetro max_leaf_nodes) são alguns dos hiper-parâmetros
do Random Forest. Um valor baixo no parâmetro max_features aumenta a chance de seleção de
características com baixa relevância, o que consequentemente piora o desempenho da predição
nos casos em que seriam mascaradas as características com grandes efeitos, em oposição, um
alto valor de max_features aumenta o risco de ter apenas candidatos "não-informativos", isto é,
com informações não interpretáveis. COURONNÉ et al. (2018)

Uma desvantagem das árvores de decisão é que elas são propensas a superajuste, o que
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significa que o modelo se adapta rapidamente ao conjunto de dados, porém, se torna ineficaz na
predição de novos resultados. O superajuste das árvores de decisão levará a uma baixa precisão
preditiva no geral impactando diretamente na acurácia do algoritmo em classificar corretamente
as classes do modelo. SCHONLAU; ZOU (2020)

A Seção 2.4 discutirá o que é sobreajuste e as consequências que pode proporcionar para
o classificador ao longo do processo de aprendizagem de máquina.

2.3 Extração de Características

A extração de features é uma parte do processo de redução de dimensionalidade, no qual
um conjunto inicial de dados brutos é dividido e reduzido a grupos mais gerenciáveis para que
diminua a complexidade da fase de processamento. A característica mais importante desses
grandes conjuntos de dados é que eles têm um grande número de variáveis. Essas variáveis
requerem muitos recursos de computação para serem processadas, portanto, a extração de
features ajuda a obter o melhor recurso desses conjuntos de big data, selecionando e combinando
variáveis, reduzindo efetivamente a quantidade de dados. Essas features são transcritas em
valores numéricos capazes de descrever o conjunto de dados real com precisão e originalidade
CHATTERJEE (2022).

Os dados são representados por um número fixo de características que podem ser binário,
categórico ou contínuo. Encontrar uma boa representação de dados depende estritamente do
domínio e das relações com as medições disponíveis. Por exemplo, em um diagnóstico médico,
as características podem ser sintomas, ou seja, um conjunto de variáveis que categorizam o
estado de saúde de um paciente (febre, nível de glicose, nível da pressão, etc.).

Há muitas técnicas de extração de feature, entretanto, o foco deste trabalho é analisar os
procedimentos que usam conceitos matemáticos para extrair os atributos (features) do conjunto
de dados. Dessarte, as próximas seções ficarão responsáveis de explicar o funcionamento de 3
algoritmos de extração: Transformação Numérica de Fourier, Entropia e Redes Complexas.

2.3.1 Transformação Numérica de Fourier (Real e Z-Curve)

O teorema da série de Fourier diz respeito à propriedade de sinais periódicos, indepen-
dente da forma que está expresso o sinal, ele pode ser representado por uma soma de sinusóides,
em outros termos, uma série de sinusóides que são iguais ou múltiplos da frequência do sinal.
Qualquer sinal periódico pode ser representado de forma equivalente por sinusóides que estão
harmonicamente relacionados com a frequência base do sinal. A conversão de um sinal em seu
equivalente senoidal é conhecida como transformação de Fourier (FT). A análise da série de
Fourier e a transformada de Fourier não são os únicos caminhos para definir as características
de uma frequência ou espectro de um sinal, mas conduzem à um visão mais geral sobre sinais
SEMMLOW (2012).
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Para colocar o teorema da série de Fourier em termos matemáticos, a forma geral da
série é:

T (t) =
a0

2
+

∞

∑
n=1

[ancos(
ntπ
L

)+ sin(
ntπ
L

)]
�
 �	2.4

em que os coeficiente a0, an, e bn são números que variam de acordo com a função que
será representada, de período fundamental 2L. Esses coeficientes são as amplitudes de cada onda
em série, que são calculadas com as seguintes fórmulas:

A maioria das análises de Fourier é aplicada a dados discretos. Os dados discretos
diferem dos dados contínuos e periódicos de duas maneiras fundamentais: eles são amostrados
por tempo e amplitude e são finito. Os dados finitos podem ser considerados como um sinal
aperiódico ou como um período de um sinal periódico.

Para extrair features com base em uma abordagem de Fourier, aplicamos a transformada
discreta de Fourier (DFT), amplamente utilizada para imagem digital e processamento de sinal
(GSP), que pode revelar periodicidades ocultas após a transformação de dados no domínio do
tempo em frequência espaço de domínio. Uma versão discreta das equações de análise de Fourier
é a Transformação de Fourier Discreta (DFT) de um sinal, que pode ser definido pela equação:

X [k] =
N−1

∑
n=0

x[n]e
− j2πkn

N
�
 �	2.5

Onde N é o comprimento do sinal (número harmônico) e a frequência do sinal definida
por k. Se os dados são realmente periódicos, esta equação está realizando uma análise discreta
da série de Fourier

A transformação de Fourier tem sido amplamente estudado em bioinformática, principal-
mente para análise de periodicidades e elementos repetitivos em sequências de DNA e estruturas
de proteínas YIN; YAU (2005). Para calcular a DFT, usa-se a transformada rápida de Fourier
(FFT), que é um método altamente eficiente para calcular a DFT de uma série temporal. No en-
tanto, para usar técnicas GSP, uma representação numérica deve ser usada para a transformação
ou mapeamento de dados genômicos.

De acordo com MENDIZABAL-RUIZ et al. (2017a), essas representações podem ser
divididas em três categorias: mapeamento de valor único, mapeamento de sequência multidi-
mensional e mapeamento de sequência cumulativa. Apesar disso, neste trabalho será estudado
apenas duas representações numéricas: Real e Z-curve.

■ Representação Real: Este mapeamento aplica valores decimais negativos para as
purinas (A, G) e valores decimais positivos para as pirimidinas (C, T). Por exemplo,
digamos que s = (G, A, G, A, G, T, G, A, C, C, A), então, r = = (-0.5, -1.5, -0.5, -1.5,
-0.5, 1.5, -0.5, -1.5, 0.5, 0.5, -1.5). A equação deste método é:
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r[n] =



-0.5, s[n] = G

-1.5, s[n] = A

0.5, s[n] = C

1.5, s[n] = T

n = 0, 1, ..., N - 1

R[k] =
N−1

∑
n=0

r[n]e
− j2πkn

N ,Pr[k] = |R[k]|2,k = 0,1, ...,N −1
�
 �	2.6

■ Representação Z-curve: O esquema da curva Z é uma curva tridimensional apresen-
tada por MENDIZABAL-RUIZ et al. (2017b) para codificar sequências de DNA com
mais semânticas biológicas. Uma dada sequência s[n] de comprimento N, levando
em consideração o n-ésimo elemento da sequência (n = 1, 2, ... , N). Denotamos os
números de ocorrência cumulativos como An, Cn e Tn para cada base nitrogenada
A, C, G e T, como o número de ocorrências na sequência, variando de {1, ..., n}.
Este método, em sua essência, diminui o número de indicações de sequências de 4
(representação numérica de Voss) para 3 (Z-curve) de forma simétrica para todos os 4
componentes, logo:

An +Cn +Gn +Tn = n
�
 �	2.7

Onde a curva Z consiste em uma série de nós P1, P2, ... , PN, cujas coordenadas x[n],
y[n] e z[n] (n = 1, 2, ... , N) são exclusivamente determinadas pela "transformada-Z",
mostrada na equação abaixo:

P[n] =


x[n] = (An +Gn)− (Cn +Tn)

y[n] = (An +Cn)− (Gn +Tn)

z[n] = (An +Tn)− (Cn +Gn)

x[n],y[n],z[n] ∈ [−n,n], n = 1, 2, ..., N

2.3.2 Entropia (Shannon e Tsallis)

A entropia, como medida de conteúdo e complexidade da informação, foi introduzido pela
primeira vez por Shannon (1948), desde então a entropia assumiu muitas formas, nomeadamente
topológicas e métricas. Essas entropias foram definidas com o propósito de classificar um sistema
através de alguma medida de complexidade ou simplicidade. Essas definições de entropia têm
sido aplicadas a sequências de DNA com amplo êxito KOSLICKI (2011).

Uma abordagem algorítmica e matemática para análise de código de DNA usando
entropia é descrita como:
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Pk(s) =
ck

N − k+1
= (

c1
1

N −1+1
, ...,

c1
4

N −1+1
,

c24+1

N −2+1
, ...,

ck
i

N − k+1
)

�
 �	2.8

Nesse método, cada sequência é mapeada na frequência das bases vizinhas k, gerando
informações estatísticas, e o k-mer é denotado por Pk. A equação é aplicada para cada sequência
com frequência de k = 1, 2, ..., 24, onde ck

i é o número de ocorrências de substrings com tamanho
k em uma sequência (s) com tamanho N, o qual o indexador i ∈ 1,2, ...,41 + ...+4k representa
a substring analisada. Como s ∈ A,C,G,T , dado qualquer inteiro positivo k, há 4k possíveis
diferentes valores para k-mers. Basicamente, são adotados histogramas com bins curtos, como
[A, C, G, T], que ocorrem para k = 1, até histogramas com bins de contagem de sequência,
como [GGGGGGGGG, ... ,AAAAAAAAAA], esse resultado para k = 9. Onde, depois de
contar o valor absoluto de frequências de cada k, geramos frequências relativas (equação 2.8) e,
em seguida, a entropia de Shannon e Tsallis é aplicada para gerar as features. BONIDIA et al.
(2021a)

A entropia de Shannon é um quantificador estatístico amplamente utilizado para a
caracterização de processos complexos. Ele é capaz de detectar aspectos de não linearidade
em séries de modelos, contribuindo para uma explicação mais confiável sobre a dinâmica não
linear de diferentes pontos de análise, o que, por sua vez, aumenta a compreensão da natureza de
sistemas complexos caracterizados por complexidade e não equilíbrio.

Entropia refere-se a uma medida de imprecisão e aleatoriedade em um sistema. Se
assumirmos que todos os dados disponíveis pertencem a uma classe, não será difícil prever
a classe de um novo dado. A entropia é 0 neste caso. Sendo um valor entre 0 e 1, quando
todas as probabilidades são iguais, a entropia assume o seu valor máximo. Dependendo das
variáveis, a definição de uma classe com baixa probabilidade é baseada em quão baixa é a
probabilidade desse incidente. E isso pode ocorrer quando passar a existir uma classe com
pequena probabilidade de realização, o que será aceitável com correlação reversa devido a tal
probabilidade. A imprecisão que ocorre quando um evento E ocorre com p probabilidade é
denotada por S(p). Se a probabilidade de uma classe ocorrer é 1, a representação é S(1) = 0.
De acordo com Shannon, as probabilidades de uma classe ocorrer são p1, p2, p3, ..., pn, a saída
examina a imprecisão por meio da medição (H). KARACA; MOONIS (2022)

A entropia de Shannon pode ser denotada como:

H(x) =
n

∑
i=1

pilog2 pi
�
 �	2.9

Aqui, H(x) é definida como a entropia da variável aleatória X. A vagueza média associada
a X é interpretada como a vagueza de X.

Além da entropia de Shannon, há também o conceito de entropia de Tsallis, de Constan-
tino Tsallis, que em 1988 reformulou a Entropia de Boltzmann-Gibs de forma generalizada com o
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uso de uma quantidade normalmente dimensionada em multifractais. As estruturas multifractais
têm sua importância em muitas áreas ativas de pesquisa (por exemplo, sistemas dinâmicos não
lineares, crescimento de modelos, estruturas comensuráveis/incomensuráveis). Tsallis postulou
então a entropia como:

Sq = k
1−∑

W
i=1 pq

i
q−1

�
 �	2.10

Esta entropia ficou conhecida como Entropia de Tsallis. Nela, a quantidade que é
normalmente escalada é pq

i , onde pi é a probabilidade associada a um evento, q ∈ N representa a
generalização da equação e W ∈ N é o número total de possíveis configurações microscópias.

Em um âmbito voltado a extração de características, ambas têm notoriedade: a entropia
de Shannon quantifica a quantidade de informação de uma variável para que consiga chegar a um
valor único que mensure a informação contida em diferentes períodos de observação (por exem-
plo, o k-mer mencionado na definição de entropia de Shannon). No entanto, no artigo BONIDIA
et al. (2021a), é relevante explorar a forma generalisada da entropia de Shannon para ter mais
opções na extração. Deste modo, para uma variável aleatória discreta F tomando valores em
{ f [0], f [1], f [2], ..., f [N − 1]} com probabilidades {p[0], p[1], p[2], ..., p[N − 1]}, representado
por P(F = f [n]) = p[n]. A entropia de Shannon e Tsallis associada com essa variável é dada
pelas expressões a seguir:

Hs[k] =−
N−1

∑
n=0

pk[n]log2 pk[n];k = 1,2, ...,24
�
 �	2.11

Ht [k] =
1

q−1
(1−

N−1

∑
n=0

pk[n]q);k = 1,2, ...,24
�
 �	2.12

2.3.3 Redes Complexas

O estudo de redes complexas é inspirado em estudos de análise empírica em redes reais.
De fato, redes complexas permitem compreender vários sistemas reais, desde redes tecnológicas
para redes biológicas. Por exemplo, nós precisamos de um conjunto de neurônios conectados por
sinapses para garantir nossa capacidade de ler este texto; nosso corpo é governado por interações
entre milhares de células; infraestruturas de comunicação como a Internet são formadas por
roteadores e cabos de fibras ópticas e a sociedade é composta por pessoas conectadas por relações
sociais, colaborações entre familiares e/ou profissionais CALDARELLI (2007).

Para CALDARELLI (2007), esses sistemas são chamados de sistemas complexos porque
não é possível prever seu comportamento coletivo a partir de componentes individuais, mas
entender a correlação matemática desses sistemas nos torna capazes de prevê-los e possivelmente
controlá-los. Em geral, um modelo de rede produz grafos com propriedades semelhante ao
sistema real. No entanto, a vantagem de usar um modelo é reduzir a complexidade do mundo
real a um nível que pode ser tratado de forma mais prática. Portanto, as redes são consideradas
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um poderoso meio de representação padrões de conexões entre partes de sistemas, como Internet,
rede elétrica, teias alimentares e redes sociais.

Do ponto de vista matemático, podemos representar uma rede por meio de uma matriz de
adjacência A. Um gráfico de N vértices tem uma matriz de adjacência N ×N. As arestas podem
ser representada pelos elementos Ai j desta matriz tal que:

Ai j =

1, se os vértices i e j estão conectados

0, caso contrário

Figura 2.14: Uma representação em rede das interações sociais de um grupo que pertence ao
mesmo clube de karatê; De acordo com MATA (2020), essa rede social foi estudada por

ZACHARY (1977) de 1971 a 1972 e capta os links de 34 sócios que se integraram entre si fora do
clube

Geralmente, as matrizes adjacentes no mundo real são assimétricas, ou seja, Ai j ̸= A ji,
porém na imagem 2.15 o grafo é simétrico. Se considerarmos redes com peso, então, cada
aresta terá um diferente peso wi j. O peso pode representar o fluxo de pessoas em um voo em
um transporte ou a corrente que flui através de uma linha de transmissão em uma rede elétrica.
Nestes casos, os elementos da matriz de adjacência são melhor descritos como Ai j = wi j, e,
geralmente, 0 ≤ wi j ≤ 1.

Uma informação relevante que pode ser obtida na matriz de adjacência é o grau ki de um
vértice i definido como o número de arestas ligadas ao vértice i, ou seja, o número de vizinhos
mais próximos do vértice i. O grau dos vértices pode ser escrito por meio da matriz de adjacência
como:

ki =
N

∑
j=1

Ai j
�
 �	2.13

Uma questão central na estrutura de um grafo é a conectividade de seus vértices, ou
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seja, a possibilidade de estabelecer um caminho entre quaisquer dois nós. Isso é importante, por
exemplo, quando temos um impulso nervoso se propagando em um rede neural. CALDARELLI
(2007)

Normalmente, o número de vizinhos em uma rede complexa a uma distância pode ser
aproximado por ⟨k⟩l , considerando que cada vértice tem grau igual ao grau médio de a rede ⟨k⟩
e não há loop. Um loop ou um ciclo é um caminho fechado Pi j (i = j) no qual todos os nós e
todas as arestas são distintas.

Em meio a tantas propriedades de grafos, basta entender estas que foram discutidas para
entender de maneira simplória o funcionamento de uma rede complexa na área de ML no que
diz respeito à extração de features.

No contexto de extração de características, as sequências são mapeadas para a frequência
de vizinhos com base nitrogenada k. Este mapeamento é convertido em um grafo não direcionado
representado por uma matriz de adjacência, na qual é aplicado um esquema de threshold (limite)
para extração de features, gerando assim um vetor de features adaptado. Um grafo G = {V,E} é
estruturado por um conjunto V de vértices (ou nós) conectados por um conjunto E de arestas (ou
links) e cada aresta é conectada a dois vértices.

Nesta circunstância, o grafo é não direcionado, o que implica que a matriz de adjacência
A é simétrica, então os elementos ai j = a ji para qualquer i e j. É aplicado então o esquema de
threshold (limite) e para cada threshold (t), um novo subgrafo é gerado do grafo original. Este
procedimento se propõe a capturar as adjacências em diferentes frequências para que várias
medidas de caracterização da rede (grafo e subgrafos), entre eles: intermediação, assortatividade,
grau médio, comprimento médio do caminho, grau mínimo, grau máximo, desvio padrão de
grau, frequência de motifs e coeficiente de agrupamento sejam capturadas. Todos esses fatores
serão usados como os atributos do conjunto (features). BONIDIA et al. (2021a)

Figura 2.15: Fluxo de uma rede complexa. (1) Cada sequência é mapeada em cada frequencia de
vizinhos de base k = 3; (2) O mapeamento é convertido em um grafo não direcionado representado

por uma matriz de adjacência; (3) A extração de features é executada usando o esquema de
threshold; (4) As features são geradas. A imagem foi extraída de BONIDIA et al. (2021a).
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2.4 Overfitting (Sobre-ajuste)

Por ser um problema bem comum na área de Machine Learning, o sobreajuste de dados
ocorre quando o modelo se adapta extremamente bem ao conjunto de treinamento, generalizando
o modelo a partir dos dados observados e não-observados, porém se adequa mal ao conjunto de
testes. Modelos superajustados tendem a memorizar a entrada baseado em um bias, incluindo
ruído inevitável no conjunto de treinamento, em vez de aprender as características relevantes
específicas de cada entrada.

O overfitting geralmente ocorre quando o modelo é muito complexo e pode ser identifi-
cado a partir destas duas características:

■ O modelo tenta memorizar os dados de treinamento em vez de aprender padrões
essenciais dos dados.

■ O modelo tem um bom desempenho apenas nos dados de treinamento e um desempe-
nho ruim em novos dados não vistos.

De acordo com PRAMODITHA (2022), uma maneira eficaz de reconhecer se um modelo
está superajustado é traçar a curva de aprendizado que irá apontar o overfitting nos modelos de
aprendizado profundo. A curva de aprendizado é um gráfico bidimensional que descreve em
porcentagem a taxa de melhoria de um certo modelo. Em outras palavras, ela pontua o modelo
de treino e a sua validação em relação à um número de lotes ou picos, chamado de epoch.

A curva indica que o modelo está superajustado caso satisfaça duas condições:

■ Se houver uma lacuna clara entre as pontuações de treinamento e validação.

■ Quando o erro de validação (loss) começa a aumentar em algum ponto enquanto
o erro de treinamento (perda) ainda diminui. No caso da precisão, a precisão da
validação começa a diminuir em algum ponto enquanto a precisão do treinamento
ainda aumenta.

Como ilustração, a figura 2.16 menciona essas duas condições.

Figura 2.16: Curva de aprendizado; Imagem extraída de PRAMODITHA (2022).
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Para detectar overfitting em métodos de aprendizado de máquina gerais como árvores de
decisão, Random Forest e até mesmo K-Nearest Neightbors, há outro gráfico chamado de curva
de validação.

A curva de validação representa a influência de um único hiperparâmetro no conjunto de
treinamento e validação. Para isso, é necessário identificar o hiperparâmetro mais importante
do modelo e traçar a influência de seus valores usando a curva de validação. Por exemplo, na
figura 2.17, o algoritmo Random Forest com o hiperparâmetro max_depth, que representa a
profundidade da árvore de decisão, pode ser usado como parâmetro de verificação de influência:

Figura 2.17: Curva de validação; Imagem extraída de PRAMODITHA (2022).

O eixo x representa os valores do hiperparâmetro fornecido, enquanto o eixo y representa
as pontuações de treinamento e validação em porcentagem. Neste gráfico em questão, após o
max_depth ser maior que 6, o modelo começa a sobreajustar os dados de treinamento. Em outras
palavras, a precisão da validação começa a diminuir em max_depth=6 enquanto a precisão do
treinamento ainda aumenta.

Há também como verificar a acurácia da fase de treinamento e da validação pela abor-
dagem da matriz de confusão, observando os valores de cada quadrante. A ideia é que se o
conjunto de treinamento tiver uma acurácia muito alta em comparação com o conjunto de testes,
possivelmente é um indicador que o modelo não se performou bem ao predizer dados não-vistos
e portanto, ocorreu um sobreajuste.

Para lidar com o overfitting, PRAMODITHA (2022) cita alguns métodos importantes
que previnem e atacam diretamente nesta problemática:

1. Redução de dimensão: A redução do número de features nos dados é chamada de
redução de dimensionalidade. Devemos manter o máximo possível de variação nos
dados originais. Caso contrário, perdemos informações úteis nos dados.
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2. Seleção de features: A seleção de features pode ser considerado como um método
de redução de dimensionalidade, pois remove recursos redundantes (desnecessários)
do conjunto de dados. Isso reduz o número de features e, consequentemente, reduz a
dimensão dos dados.

3. Parada antecipada: Na parada antecipada, o processo de treinamento é parado
intencionalmente antes que o modelo comece a se sobreajustar, observando a curva
de aprendizado ou a curva de validação.

4. Validação Cruzada k-fold: Na validação cruzada k-fold, o conjunto de dados com-
pleto é dividido em diferentes partes iguais, dependendo do valor de k (geralmente 5
ou 10). Cada parte contém diferentes tipos de instâncias (pontos de dados) e para
cada pedaço é feito uma avaliação de métrica.

5. Limitação de conjunto: Um ensemble (grupo) é uma coleção de várias árvores
de decisão criadas a partir de subconjuntos dos dados e features de treinamento.
Por exemplo, uma Random Forest é um ensemble que contém um grupo de árvores
de decisão não correlacionadas, e devido a essa característica a aleatoriedade extra
ocorre. Além disso, o resultado final é calculado pela média dos resultados de cada
árvore não correlacionada. Assim, a Random Forest produz resultados mais precisos
e estáveis do que uma única árvore de decisão.

6. Pre-prunning: Por padrão, uma árvore de decisão é desenvolvida até o máximo de sua
profundidade, e caso seja atingido o seu limite, ocorrerá o overfitting dos seus dados.
Nas árvores de decisão, o pré-prunning é o processo de controle do crescimento da
árvore. O pré-prunning aplica uma regra de parada antecipada que interrompe o
crescimento de uma árvore de decisão previamente, ficando com menos ramificações
do que o esperado. Para que seja aplicado esta técnica, os hiperparâmetros max_depth,
min_samples_leaf, min_samples_split são limitados.

7. Pós-pruninng: O pós-prunning é o processo de remoção de partes da árvore após
a árvore ter crescido completamente.Cost complexity pruning (ccp_alpha) é um
hiperparâmetro deste método que aumenta o número de nós reduzindo a profundidade
da árvore. Logo, valores maiores de ccp_alpha evitam o overfitting.

8. Regularização de ruído: Ao adicionar ruído aos dados de treinamento, uma pequena
quantidade de ruído será adicionada a cada instância de treinamento e gerará dife-
rentes versões da mesma instância, expandindo cada conjunto. Essa camada extra é
comumente usada em algoritmos de rede neural pois ajuda a evitar o overfitting.

9. Regularização de "abandono": É um método de regularização específico da rede
neural que remove aleatoriamente alguns nós da rede durante o treinamento com base



2.5. CROSS-VALIDATION (VALIDAÇÃO CRUZADA) 43

no valor da probabilidade que definimos em cada camada. Os nós removidos não
participam do processo de atualização dos parâmetros e a regularização é aplicada
por camada. A rede original torna-se menor após a aplicação deste algoritmo e, assim
são menos flexíveis.

No artigo de DEMŠAR; ZUPAN (2021), os autores enfatizam que a modelagem não
se limita a ajustar os parâmetros do modelo, mas inclui todos os outros procedimentos como
pré-processamento de dados, seleção de modelo e ajuste de hiperparâmetros. O experimento
feito demonstrou que é inevitável não ter esta etapa de pré-processamento de dados antes de
alimentar os dados em um algoritmo de aprendizagem, pois o resultado final do algoritmo
depende estritamente desta metodologia para ser útil.

2.5 Cross-Validation (Validação Cruzada)

A Validação Cruzada (CV) é uma técnica de reamostragem usada para avaliar modelos de
ML em uma amostra limitada de dados ou desconhecido dados que ajudariam a fazer previsões
sobre dados que não foram usados durante o ciclo de treinamento. Segundo RABELLO (2019),
o CV consiste em particionar os dados em conjuntos (partes), onde um conjunto é utilizado
para treino e outro conjunto é utilizado para teste e avaliação do desempenho do modelo. Este
procedimento tem altas chances de detectar se o seu modelo está sobreajustado aos seus dados
de treinamento, ou seja, provocando overfitting. O uso de subconjuntos aleatórios de dados em
validação cruzada, também conhecida como validação cruzada k-fold, é uma forte maneira de
testar a taxa de sucesso dos modelos usados para classificação MüLLER (2020).

Na validação cruzada, um conjunto de dados D é particionado em k dobras (subconjuntos
disjuntos) Di para i = {1, ..., k}. A cada iteração, treino e teste, um conjunto formado por K-
1 subconjuntos são utilizados para treinamento e o subconjunto restante será utilizado para
teste gerando um resultado de métrica para avaliação (ex: acurácia). Um particionamento
aleatório clássico do conjunto de dados em k dobras permite que haja registros presentes
simultaneamente tanto no treinamento quanto na validação, induzindo assim o vazamento de
dados e gerando estimativas superotimistas de desempenho em comparação com a validação
cruzada sem duplicatas, que dispõe a estimativa imparcial. GUO (2021)

O processo k-fold é um mecanismo que minimiza as desvantagens do método hold-out,
que é uma metodologia da qual divide o conjunto de dados em duas partes: o conjunto de
treinamento e o conjunto de teste e normalmente, 80% do conjunto de dados vai para o conjunto
de treinamento e 20% para o conjunto de teste nos diversos casos, todavia, são parâmetros
ajustáveis e fica a cargo do programador adaptá-los. Apesar da facilidade do método hold-out,
se o conjunto de dados não for completamente uniforme ou bem distribuído, pode ser que ao
separar os dois conjuntos (de treinamento e de testes) ocorra uma divergência significativa entre
os conjuntos, o que reflete na precisão da acurácia do modelo.
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A figura 2.18 apresenta uma nova maneira de dividir o conjunto de dados que supera as
consequências do método clássico hold-out que baseado no referencial LYASHENKO (2023)
funciona da seguinte forma:

Figura 2.18: Procedimento k-fold; Imagem extraída de SHAIKH (2018).

1. Escolha um número de folds-k, neste caso, k = 5.

2. Divida o conjunto de dados em k partes iguais chamadas de dobras, se possível.

3. Escolha k – 1 dobras como o conjunto de treinamento. A dobra restante será o
conjunto de teste.

4. Treine o modelo no conjunto de treinamento. A cada iteração de validação cruzada,
você deve treinar um novo modelo independentemente do modelo treinado na iteração
anterior.

5. Valide o conjunto de teste.

6. Salve o resultado da validação.

7. Repita os passos {3, ..., 6} k vezes. A cada vez, use a dobra restante como conjunto
de teste. No final, o modelo deve ter sido validado em todas as dobras que possui.

8. Para obter a pontuação final, a média dos resultados obtidos na etapa 6 deve ser
calculada.

O K-Fold estratificado é uma variação da técnica padrão de k-Fold CV, projetada para ser
eficaz nesses casos de desequilíbrio do valor alvo. A técnica, comumente chamada de Validação
Cruzada Estratificada (SKCV), garante que as frequências de classe relativas sejam efetivamente
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sustentadas em cada divisão na fase de validação quando usadas amostragens estratificadas
em vez de amostragens aleatórias, principalmente em problemas de classificação PRUSTY;
PATNAIK; DASH (2022).

Este método, que usa amostragem estratificada, divide o conjunto de dados k dobras de
modo que cada parte contenha aproximadamente a mesma porcentagem de amostras de cada
classe de destino que o conjunto completo. No caso de regressão, o SKCV garante que o valor
alvo médio seja aproximadamente igual em todas as dobras.

Figura 2.19: Método SKCV; Imagem extraída de SHAIKH (2018). O eixo x representa as
iterações do CV e o eixo y o indexador dos conjuntos.

O SKCV preserva as frequências de classe em cada dobra para serem as mesmas do
conjunto de dados geral. A figura 2.19 é um exemplo de um conjunto de dados com três classes
ordenadas. Se for aplicado um k-3 ao algoritmo, o primeiro terço dos dados estaria na primeira
dobra, o segundo na segunda dobra e assim por diante. Como esses dados estão ordenados, a
validação cruzada comum seria ruim pois irá perder a consistência entre os dados, ao contrário
do SKCV que garante que cada parte terá exatamente 1/3 dos dados de cada classe.

2.6 Métricas de avaliação

Avaliar o algoritmo de aprendizado de máquina é uma parte essencial de qualquer
projeto de ML, pois para verificar se o classificador conseguiu predizer corretamente o conjunto
de treinamento, é preciso mensurar a sua competência de predizer o modelo. A precisão da
classificação é usada para medir o desempenho do modelo, todavia, nem sempre a avaliação será
satisfatória e os resultados vão variar de acordo com a métrica escolhida. Por exemplo, a métrica
precisão_score pode, em alguns casos, fornecer resultados ruins quando avaliado em relação a
outras métricas.

Uma métrica exclusiva não é o suficiente para determinar a acurácia correta do modelo,
diante disso, este tópico retratará as diferentes métricas existentes para calcular a eficiência do
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modelo preditivo, levando em conta como é feito a estimativa e a sua relação com a matriz de
confusão.

A matriz de confusão exibirá a distribuição dos registros em termos de suas classes atuais
e de suas classes previstas e detalha em como o classificador preveu o conjunto. A tabela 2.1
mostra as frequências de classificação para cada classe do modelo por meio dos valores de TP,

TN, FP, FN.
Em que TP, FP, TN e FN significa respectivamente:

■ Verdadeiro positivo (true positive — TP): quando o método diz que a classe é positiva
e, ao verificar a resposta, vê-se que a classe era realmente positiva.

■ Falso positivo (false positive — FP): quando o método diz que a classe é positiva,
mas ao verificar a resposta, vê-se que a classe era negativa;

■ Verdadeiro negativo (true negative — TN): quando o método diz que a classe é
negativa e, ao verificar a resposta, vê-se que a classe era realmente negativa;

■ Falso negativo (false negative — FN): quando o método diz que a classe é negativa,
mas ao verificar a resposta, vê-se que a classe era positiva;

Tabela 2.1: Representação em tabela da matriz de confusão com seus respectivos valores
booleanos.

Conjunto TN FP FN TP

Classe real 0 0 1 1
Classe prevista 0 1 0 1

Ao término de cada cálculo de métrica, o algoritmo de treinamento irá efetuar a avaliação
do melhor modelo preditivo baseado na melhor taxa de score.

Há métricas como o Precision, Recall, F1, F-Beta e o Roc-AUC. E, no geral, a matriz de
confusão é a base de cálculo para estas métricas.

O precision-score é uma métrica de classificação que mede a capacidade de um classifi-
cador de não rotular como positiva uma amostra negativa. Ou seja, se o classificador tiver muitos
acertos sobre o conjunto verdadeiro-positivo, isso resultará em uma pontuação de precisão mais
alta. Quanto maior o valor da métrica, melhor. O melhor valor possível é 1 (se um modelo
acertou todas as previsões) e o pior é 0 (se um modelo não fez uma única previsão correta).

Precision =
T P

T P+FP

�
 �	2.14

O recall-score é uma métrica de classificação que apresenta uma proporção de previsões
da classe verdadeira-positiva em relação ao número total de amostras positivas. Em outras



2.6. MÉTRICAS DE AVALIAÇÃO 47

palavras, recall mede a capacidade de um classificador para detectar amostras positivas sobre um
modelo.

Recall =
T P

T P+FN

�
 �	2.15

A pontuação F1 pode ser interpretada como uma média harmônica do Precision e Recall

pois a contribuição relativa de ambas é igual. A equação do F1-score é:

F1 = 2 · (precision · recall)
(precision+ recall)

�
 �	2.16

A pontuação F-beta é a média harmônica ponderada de precision e recall, atingindo seu
valor ideal em 1 e seu pior valor em 0.

Fb =
1+β 2 · (precision · recall)
(β 2 · precision)+ recall

�
 �	2.17

O parâmetro beta representa a razão entre o recall e o precision. beta > 1 dá mais peso
ao recall, enquanto beta < 1 favorece o precision. Assintoticamente, se o beta tender à +inf

considera-se apenas o recall e beta tendendo 0 apenas precision

A curva ROC ou “Curva Característica de Operação do Receptor” é um gráfico que
permite avaliar um classificador binário levando em consideração a taxa de verdadeiros positivos
(TP) e a taxa de falsos positivos (TF). Essas taxas também podem ser referidas pelas siglas TPR
(True Positive Rate) e FPR (False Positive Rate), respectivamente. Esse gráfico permite comparar
diferentes classificadores e definir qual o melhor com base em diferentes pontos de corte. Na
prática, quanto mais próximo do topo do eixo Y melhor o classificador DöRING (2018). O ROC
possui dois parâmetros:

■ Taxa de verdadeiro positivo (do inglês, True Positive Rate), que é dado por:

T PR =
T P

T P+FN

�
 �	2.18

■ A Taxa de falso positivo (do inglês, False Positive Rate), que é definida da seguinte
maneira:

FPR =
FP

FP+T N

�
 �	2.19

Uma curva ROC é um plano bidimensional em relação as duas taxas (TPR e FPR) nos
diferentes limiares de classificação. Reduzir o limite de classificação determina mais itens como
positivos, o que aumenta os falsos positivos e verdadeiros positivos. Uma curva típica de ROC é
apresentada como:
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Figura 2.20: Curva ROC e as previsões da classe positiva (TPs) e falsos positivos (FPs)
GOLDSTEIN-GREENWOOD (2022)

AUC significa "área"sob a curva ROC, ela é a derivada da curva ROC. Nesta métrica, há
a soma da região abaixo da curva ROC inteira, como se fosse o cálculo de uma integral definida.
O valor do AUC varia de 0,0 até 1,0 e o limiar entre a classe é 0,5. Portanto, acima desse limite,
o algoritmo classifica em uma classe e abaixo em outra classe.

Uma maneira de interpretar a AUC é a probabilidade de o modelo classificar um exemplo
positivo aleatório mais alto do que um exemplo negativo aleatório. Por exemplo, considerando
em ordem crescente de previsões de regressão logística:
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Figura 2.21: Curva AUC abaixo da curva ROC. Extraída de DERNONCOURT (2015)

A AUC pode ser aplicável conforme o objetivo a priori, sendo recomendável por dois
motivos:

■ É invariante em escala, uma vez que trabalha com precisão das classificações ao invés
de seus valores absolutos.

■ Mede a qualidade das previsões do modelo, independentemente do limiar de classifi-
cação

Apesar de útil na invariância dos resultados e na independência do limiar para a medição
da qualidade de previsão do modelo, há ressalvas que podem limitar o uso do AUC em ocasiões
específicas:

1. Nem sempre uma variação é adequada quando se trata de escalonamentos: O objetivo
do classificador é equilibrar as probabilidades de cada TPRs e FPRs a cada iteração.

2. A incompatibilidade de limite de classificação nem sempre é desejada: Nos casos
em que há amplas disparidades no custo de falsos negativos em comparação a falsos
positivos, pode ser essencial minimizar um tipo de erro de classificação.
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3
Revisão da literatura

A construção do estado de conhecimento teve como princípio a análise sistemática de
dissertações, teses, trabalhos científicos e artigos produzidos em um lapso temporal de 6 anos.
A estratégia utilizada para a revisão sistemática da literatura busca seguir os critérios adotados
por KITCHENHAM; BRERETON (2013) tendo o trabalho de BONIDIA et al. (2021a) como
exemplo.

3.1 Questões de pesquisa

As questões de pesquisa norteam a revisão sistemática e têm como objetivo definir
a parametrização da problemática identificando os trabalhos que propunham a extração de
características em sequências de RNAs, quais métodos de extração matemáticos bem como o
comparativo da técnica biológica em detrimento dos modelos matemáticos e a acurácia de cada
método considerando um grupo de RNAs não-codificantes (ncRNAs). Portanto, as Questoes de
pesquisa (QP) foram definidas a seguir:

■ QP1 Quais os métodos de extração de características em sequências de RNAs?

■ QP2 Quais os modelos matemáticos utilizados na extração?

■ QP3 Quais os grupos de ncRNAs a serem trabalhados e os modelos matemáticos
aplicados?

3.2 Estratégia de busca

As bases de dados PubMed Central, repositório da UnB, Oxford Academic, Medline,
SIABI/IFB foram consumidas para embasamento teórico e argumentativo da tese. O PubMed

Central é um banco de dados digital gratuito de literatura científica na área de biomedicina
e tecnologia gerenciado e desenvolvido pela National Library of Medicine que contém um
vasto repositório de artigos científicos mundialmente reconhecido. O repositório da UnB é
um serviço digital oferecido pela Biblioteca Central para a gestão e disseminação da produção
científica da Universidade de Brasília. A base da Oxford Academic publica os periódicos de
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cunho científico geral para o público em mais alta qualidade, dispondo de uma comunidade
acadêmica da Universidade de Oxford. A Medline que é uma biblioteca virtual de medicina a
qual detém os dados indexados por uma palavra-chave específica do sistema MeSH e, por fim, o
SIABI/IFB, biblioteca virtual do IFB que disponibiliza os recursos dos campus existentes em
Brasília.

Tabela 3.1: Base de dados consumidas

Base de dados Link para acesso

PubMed Central <https://pubmed.ncbi.nlm.nih.gov/>
Repositório UnB <https://repositorio.unb.br/>
Oxford Academic <https://academic.oup.com/journals>
Medline <http://bases.bireme.br/>
SIABI/IFB <http://siabi.ifb.edu.br/>

Para cada base de dados escolhida foram realizadas buscas avançadas em suas ferramentas
de pesquisa com um intervalo de tempo de 6 anos até a data de realização desta revisão (24 de
junho de 2022), contemplando como palavras-chaves de pesquisa: ncRNAs, machine learning,
feature extraction, sequence features, mathematical approach às quais resultaram em um conjunto
de mais de 300 literaturas. Visando diminuir o escopo das produções para a problemática em
questão, modificou-se o critério de análise que apenas considerava o título e resumo dos materiais
e passou-se a levar em conta apenas os trabalhos que continham ncRNAs como objeto de estudo.
Na seção posterior, mais especificamente no processo de seleção e exclusão, ao passar pela
crítica qualitativa das obras, as literaturas serão menos abrangentes e mais voltadas ao estudo de
caso da tese. A tabela 3.2 mostra a quantidade de artigos científicos retornados por cada banco
de dados no campo de busca.
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Tabela 3.2: Resultado das buscas nos bancos de dados

Base de dados Palavras-chaves Produções científicas

PubMed Central Machine learning, sequence features, ncRNAs 98
Repositório UnB Machine learning, ncRNAs 5
Oxford Acade-
mic

Machine learning, ncRNAs, mathematic sequence

features
153

Medline Machine learning, ncRNAs, mathematic sequence 34
SIABI/IFB Machine learning 2

Total 292

3.3 Critério de inclusão e exclusão

Para responder as QPs definimos Critérios de Inclusão (CIs) e Critérios de Exclusão
(CEs) que irão filtrar os resultados das pesquisas. Os CIs estão listados a seguir.

■ Critério de inclusão (CI)1 Produções científicas que usam os ncRNAs como objeto
de pesquisa para a extração de características;

■ CI2 Estudos primários que aplicam modelos preditivos supervisionados ou não super-
visionados sendo biológico, híbrido ou matemático para classificação de ncRNAs;

■ CI3 Estudos que classificam as classes e grupos de ncRNAs aplicando o modelo
matemático de extração de características;

Os Critério de exclusão (CE) irão ajudar a filtrar apenas os artigos científicos relevantes
para a revisão. Baseado nas questões de pesquisa que norteam o trabalho, os CEs propos-
tos abaixo selecionarão um grupo concreto de produções a fim de diminuir a abragência e a
generalização do tema.

■ Estudos que não estejam escritos em português ou inglês;

■ Estudos que a versão completa não é disponível gratuitamente;

■ Estudos "duplicados", que foram obtidos através da busca em mais de uma base,
nestes casos apenas o primeiro será considerado.

■ Produções científicas que não classificam o grupo de ncRNAs;

■ Estudos descritivos de funcionalidades que não discorre sobre a metodologia de
Aprendizado de máquina (ML) empregue;
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3.4 Análise e discussão das literatuas

As aplicações do AM extraem informações relevantes de sequências baseadas em várias
propriedades biológicas e físico-químicas, usando quadros de leitura abertos (ORF), frequência
de uso de nucleotídeos adjacentes, conteúdo GC e entre outros. Essas abordagens são comuns
em problemas biológicos, mas essas implementações são muitas vezes difíceis de reutilizar ou
adaptar a outro problema específico. Um grande exemplo é que os recursos ORF são um guia
essencial para ncRNAs de genes codificadores de proteínas, mas não são capazes de classificar
classes para os ncRNAs, e, como dito por SZCZEÅNIAK et al. (2020), consequentemente, a
extração de um conjunto de características que contêm informação discriminatória significativa
para identificá-las é prejudicada, o que influencia na construção de um modelo preditivo.

BONIDIA et al. (2021a) propõe um modelo preditivo matemático para identificação
de classes de ncRNAs. Este trabalho foi dividido em três estudos de caso: (I) Avaliação das
abordagens matemáticas com os problemas mais frequentes da classe de ncRNAs, por exemplo,
lncRNA versus mRNA; (II) Teste de generalização em diferentes classificadores de ncRNAs; (III)
Análise de persistência em cenários com dados desbalanceados. As técnicas de ML aplicadas
consistem na transformação discreta de Fourier, mapeamento numérico (representação de Voss,
de Real, de z-curve, de EIIP e de números complexos), entropia de Shannon e Tsallis e o uso de
redes complexas.

WANG et al. (2014) em contra-proposta aplica um Algoritmo genético (GA) junto a uma
SVM que implementa o método de aprendizado de máquina supervisionado baseado no conceito
da teoria de Darwin, isto é, o conjunto de sequências que mais se adaptam a parametrização
de classificação dos algoritmos são herdadas na próxima geração a partir do mecanismo de
competição. Em suma, a classificação executa um modelo preditivo biológico na categorização
do grupo de ncRNAs.

BONIDIA et al. (2021b) apresenta um pacote de 20 descritores matemáticos divididos
em 5 grupos: mapeamento numérico, chaos game, transformação de Fourier, entropia e grafos.
Similar ao seu estudo comparativo BONIDIA et al. (2021a), o autor executa o estudo de caso
nos ncRNAs treinando o algoritmo CatBoost para classificação de classes e concluiu que a
abordagem matemática trouxe uma eficácia significativa nos resultados.

ARAUJO (2016) busca classificar as classes de snoRNAs (H/ACA box snoRNA e C/D box

snoRNA) empregando uma técnica mais sofisticada na fase de treinamento no intuito de encontrar
bons meta-parâmetros da SVM. A ideia é usar o Explicit Decomposition with Neighborhoods
(EDeN), um kernel decomposicional de grafos baseado no Neighborhood Subgraph Pairwise
Distance Kernel (NSPDK), que pode ser usado para a geração explicita de features a partir de
grafos e as SVMs que geram um hiperplano como superfície de decisão de tal modo que a margem
de separação entre amostras positivas e negativas é maximizada formando, posteriormente, as
classes preditas no hiperplano.
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ARAUJO (2017) é a versão melhorada do snoReport 1.0, ferramenta cuja fora utilizada
em ARAUJO (2016) para a classificação de snoRNAs usando uma combinação de estruturas
secundárias e ML. A aprimoração do snoReport contemplou novos recursos para os snoRNAs
box C/D e H/ACA box, desenvolvendo uma técnica robusta na fase de treinamento da SVM (com
dados recentes de organismos vertebrados e o refinamento dos parâmetros C e gamma na SVM),
consumindo ainda mais bancos de dados para expandir a coleção anterior do snoReport. Para
validar a sua serventia, houve diversos testes em organismos animais os quais mostraram um
ótimo desempenho de classificação.

AOKI; SAKAKIBARA (2018) aborda a classificação de ncRNAs fundado nas redes
neurais convolucionais. O treinamento é feito por representações distributivas de 4 nucleotídeos
que derivaram com sucesso as matrizes de peso de posição em kernels aprendidos que corres-
pondem a sequência de motifs como locais de ligação a proteínas. A classificação de um par
alinhado de duas sequências em classes positivas e negativas corresponde ao agrupamento das
sequências de entrada. Depois de combinarmos a distribuição representativa de nucleotídeos
de RNA com a informação da estrutura secundária específica para ncRNAs e ainda com perfis
de mapeamento de leituras de sequência de próxima geração, o treinamento de CNNs para
classificação de alinhamentos de sequências de RNA rendeu agrupamento preciso em termos de
famílias ncRNA e superou os métodos de agrupamento existentes tradicionais para sequências
de ncRNA. Interessantes sequências de motifs e estruturas secundárias conhecidas pelas famílias
de snoRNAs, microRNA e tRNAs foram identificadas no estudo.

NAVARIN; COSTA (2017) sugere um estudo voltado a classificação funcional de
ncRNAs fundamentado na implementação de um grafo kernel. Para lidar com entidades represen-
tadas como grafos, uma variedade de kernels têm sido propostos na literatura. Diferentes noções
de similaridade são obtidas escolhendo diversos tipos de subestruturas a serem consideradas,
desde caminhos até pequenos subgrafos. Existem várias maneiras de representar estruturas
secundárias de RNA, incluindo as representações entre colchetes (onde os nucleotídeos são
convertidos em nós e ligações em arestas) e representações em árvore (onde pares de bases são
convertidos em nós ’tronco’ e nucleotídeos de alça são convertidos em nós de ’loop’). Cada
representaçãotem diferentes vantagens e desvantagens, incluindo perda de informações e comple-
xidade de cálculo. A estratégia NSPDK, assim como no trabalho de ARAUJO (2017), é adotada
com o objetivo de materializar a codificação de características implícitas que é chave para obter
eficiência linear na fase de classificação. Neste artigo, a representação escolhida é a loss-less, ou
seja, sem perda, onde os nós representam nucleotídeos e as arestas são as ligações entre eles,
seja do tipo backbone ou do tipo de encadernação.

3.5 Conclusão dos resultados apresentados na análise

Através da análise e discussão dos resultados da revisão, percebemos que existe a
exploração de modelos preditivos matemáticos para a classificação de ncRNAs em oposição
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aos modelos tradicionais biológicos. Este fato deve-se pela alta taxa de F-score, em outras
palavras, da acurácia no classificamento de classes para os ncRNAs. Apesar da perspectiva
biológica e híbrida, em contraste com a matemática, sua escolha varia de acordo com o objeto
de estudo analisado e a sua eficiência de identificação. Há algoritmos que são melhores para
classificação de móleculas de DNAs, assim como há outros mecanismos de classificação que
produzem resultados significativos para as moléculas de RNAs. No atual contexto, os projetos
científicos revelam que a extração de características por um cenário matemático demonstrou
ser relevante para classificação de ncRNAs. O principal enfoque da monografia é demonstrar o
custo do algoritmo, o pipeline das etapas a serem executadas desde a entrada, a parametrização,
treinamento e testes até a saída. Mesmo que muito progresso já tenha sido feito, existem
incógnitas para este grupo importante de moléculas que podem ser respondidas pelo avanço do
AM. Com base nas provas de conceito observadas é possível perceber a capacidade do modelo
preditivo matemático de identificar os ncRNAs e do benefício da identificação em um âmbito
biomedicinal.
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4
Projeto

O capítulo de projeto disserta sobre os estágios do AM voltado ao campo de pesquisa
abragendo detalhadamente a construção do conjunto de dados ponderando sobre a quantidade de
sequências encontradas de cada classe de snoRNAs e as tomadas de decisão na construção do
conjunto negativo.

Explicará a etapa de pré-processamento dando ênfase, sobretudo, aos cálculos estatísticos
do percentil dos dados, a média, variância e o valor máximo e mínimo de sequências por família
identificado são informações que irão compôr este capítulo. Esta fase mostra como é feito o
balanceamento dos conjuntos positivos e negativos na elaboração do conjunto final a ser usado
como entrada para o algoritmo de extração.

Na fase de extração introduzirá o conceito de automatização de scripts no que diz respeito
aos algoritmos de extração empregues, aplicando o paralelismo de execução com o propósito de
acelerar a extração de características do conjunto de dados.

Em seguida, explicará o processo de treinamento responsável em dividir o nosso conjunto
de dados para treino e testes. Nesta seção haverá a menção a validação cruzada, o método hold-

out de particionamento de dados, o algoritmo de classificação Random Forest, os hiperparâmetros
do estimador sobre uma grade de parâmetros e a matriz de confusão que exibe a distribuição dos
registros em termos de sua classe.

Por último, é esclarecido o pipeline de treinamento e os estudos de caso que norteará
a pesquisa. As métricas são fundamentais nesta etapa para avaliar a acurácia do preditor em
classificar as duas classes de snoRNAs (C/D e H/ACA).

4.1 Coleta de dados

A busca por sequências das duas classes de snoRNAs foi feita a partir do banco de dados
RFAM no intuito de agrupar o conjunto de sequências por sua respectiva família.

Criou-se um arquivo de script em shell para baixar automaticamente todas as sequências
de cada família, definindo o nome do arquivo baseado no nome da familia com o formato da
extensão fasta, cujo é a extensão padrão de representação de sequências de nucleotídeos. Cada
arquivo foi designado à pasta com o nome da sua classe de snoRNA.
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Em sua totalidade, foram obtidas 4877 sequências de snoRNAs C/D box entre 475
famílias e 2813 sequências de snoRNAs H/ACA box entre 283 famílias para o conjunto positivo
de dados.

Em contra-partida, condicionou-se o esforço em construir o conjunto negativo consu-
mindo as famílias RNase P, 5S rRNA e tRNA e algoritmos de embaralhamento, o que proporcio-
nou o total de 4999 sequências, sendo 2433 sequências de RNAs não pertencentes à snoRNAs e
2566 sequências aleatórias.

É evidente que a desproporcionalidade entre a quantidade de sequências de um grupo ao
outro pode afetar inteiramente a classificação do snoRNA na etapa de aprendizado de máquina e,
portanto, no momento deve ser considerado dados brutos não-processados.

4.2 Pré-processamento de dados

Usando as famílias como base de cálculo e construção do conjunto positivo, extraiu-se o
percentil de 85% dos dados, a média aritmética, a variância, e o valor máximo e mínimo das
quantidades de sequências conforme expresso na tabela 4.1.

Tabela 4.1: Métricas de cálculo do conjunto positivo

Classe Sequências Famílias
Percentil
(0.85)

Média Variância Máximo Mínimo

C/D box 4877 475 6 4 2.5589 7 2
H/ACA box 2813 283 22 5 27884.03 76 2

As métricas de cálculo balancearam por meio da média aritmética a quantidade de sequên-
cias esperadas por família para que o algoritmo de máquina de aprendizagem as consuma em
agrupamento equivalente. Dessa forma, ao prefedinir essa condição, sobraram 1553 sequências
de C/D box e 1013 sequências de H/ACA box para composição do conjunto positivo de dados.

Em consonância, é necessário do conjunto negativo para treinar e testar o modelo de
classificação a ser gerado, então, a elaboração do conjunto negativo teve como regra fundamental
que 50% do conjunto seria criado por sequências geradas aleatórias por um algoritmo de
embaralhamento à medida que a outra metade seria formada por sequências genéticas de RNAs
tais como Ribonuclease (RNase) P, 5S RNA ribossómico (rRNA) e RNA transportador (tRNA),
considerando que o tamanho máximo delimitado para o conjunto negativo seria três vezes maior
que o conjunto positivo. Assim, adquiriu-se um total de 3166 sequências.

Tendo esta condição preestabelecida, obteve-se 1500 sequências geradas aleatórias e
1666 sequências constituídas pela mesclagem de RNase P, 5S rRNA e tRNA, totalizando 3166
sequências no conjunto negativo.
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4.3 Extração

Os métodos de extração de características utilizados são de natureza matemática como
o mapeamento númerico com as transformações de Fourier (Real, Z-curve), as entropias de
Shannon e Tsallis e as redes complexas. Todos os algoritmos de extração de características
podem ser extraídos do Github de BONIDIA et al. (2021a).

A criação de scripts na etapa de extração foi primordial para automação das atividades
repetitivas no que tange à eficiência e rapidez pois facilitou a adequação de parâmetros para os
algoritmos de extração, a organização de entrada e saída de dados em arquivos (principalmente
àqueles que continham o formato fasta em sua extensão) e a execução paralela dos algoritmos
para acelerar a fase de extração e agrupamento de dados.

A extração retornou um arquivo no formato csv abrangendo as colunas com as caracterís-
ticas encontradas em cada família pelos algoritmos. Vale ressaltar que estes dados são puramente
contínuos, logo, é possível que haja valores infinitos e que não sejam numéricos. É relevante ter
a ciência desta propriedade dos dados pois posteriormente haverá um tratamento em torno destes
valores no estágio de pré-execução do classificador.

Para agrupar todos esses arquivos de formato csv à classe de snoRNA pertencente, usou-
se as ferramentas "pré-embutidas"do sistema Linux de concatenação e manipulação do contéudo
existente do arquivo como cat, awk, grep.

4.4 Treinamento

No processo de treinamento, em busca de um resultado satisfatório do algoritmo classi-
ficador por meio das extrações de características obtidas, estabeleceu-se um fluxo de trabalho
(4.1) com o passo-a-passo das operações do algoritmo:
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Figura 4.1: Fluxo de trabalho do algoritmo.

Dividiu-se o conjunto de treino e de testes tal que 70% do conjunto original ficou
para treino enquanto os 30% restantes ficaram para o conjunto de testes e estes valores foram
passados para a função train_test_split provida pelo pacote sklearn.model_selection em Python.
No treinamento sem validação cruzada, há um parâmetro chamado test_size responsável por
estabelecer a quantidade de iterações que o algoritmo de treino irá efetuar para que no final possa
avaliar qual destes modelos de saída teve o melhor proveito. Em contrapartida, no treinamento
com validação cruzada, o parâmetro n_estimators designa a proporção de modelos em uma
única execução do algoritmo de modo que obtenha o melhor estimador entre a porção avaliada
apoiado pelas métricas de avaliação.

Optou-se também em escolher o algoritmo de classificação Random Forest por ter sido um
algoritmo promissor na pesquisa de BONIDIA et al. (2021a) a qual foi testada a sua generalização
em diferentes tarefas de classificação para RNAs longos não-codificantes (lncRNAs) a partir de
dados desbalanceados.

Os hiper-parâmetros de ajuste utilizados na Random Forest para cada método de extração
de características estão dispostos na tabela 4.2.
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Tabela 4.2: Hiperparâmetros da Random Forest sem usar a função GridSearchCV

Parâmetro Valor

"bootstrap" true
"ccp_alpha" 0.0

"class_weight" None
"criterion" gini

"max_depth" 10
"max_features" sqrt

"max_leaf_nodes" None
"max_samples" None

"min_impurity_decrease" 0.0
"min_samples_leaf" 1
"min_samples_split" 2

"min_weight_fraction_leaf" 0.0
"n_estimators" 100

"n_jobs" None
"oob_score" false

"random_state" None
"verbose" 0

"warm_start" false

Para automatizar este processo de tuning de hiperparâmetros, foi-se utilizado a função
GridSearchCV do módulo sklearn em Python. O objetivo primário do GridSearchCV é a criação
de combinações de parâmetros a partir de uma busca exaustiva sobre valores especificados para
um estimador (score, ou seja, métrica de avaliação), para posteriormente avaliá-las.

Os parâmetros do estimador usados para aplicar esses métodos são otimizados e refinados
por validação cruzada (cross-validation) sobre uma grade de parâmetros.

De forma semelhante aos hiperparâmetros padrões da Random Forest, o GridSearchCV

aplicou os seguintes parâmetros conforme mostrado na tabela 4.3.
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Tabela 4.3: Hiperparâmetros da Random Forest após o uso da função GridSearchCV

Parâmetro Valor

"mean_fit_time" array([0.03470263, 0.34155726, 1.70107441])
"std_fit_time" array([0.00415981, 0.02498759, 0.14168099])

"mean_score_time" array([0.00217724, 0.01229601, 0.04444399])
"std_score_time" array([0.0001098 , 0.00510206, 0.01017052])

"param_n_estimators" masked_array(data=[10, 100, 500])
"mask" array([False, False, False]

"params" array[’n_estimators’: 10, ’n_estimators’: 100, ’n_estimators’: 500]
"split0_test_score" array([0.98817967, 0.99061033, 0.99061033])
"split1_test_score" array([0.98337292, 0.98329356, 0.98337292])
"split2_test_score" array([0.98584906, 0.98352941, 0.98352941])
"split3_test_score" array([0.98345154, 0.98113208, 0.98113208])
"split4_test_score" array([0.98578199, 0.98584906, 0.98578199])
"mean_test_score" array([0.98532703, 0.98488289, 0.98488535])
"std_test_score" array([0.00178623, 0.00322997, 0.00321846])

"rank_test_score" array([1, 3, 2])

4.5 Estudo de caso: classificação de snoRNAs em conjunto de dados encontrados na
literatura

Nos estudos de casos, as operações foram divididas em N execuções e para cada execução
ocorrerá a verificação das métricas de avaliação para que na etapa de testes seja escolhido o
melhor modelo encontrado para cada método de extração.

As validações de treinamento envolvem qualquer validação em que o modelo precise
ser retreinado. Normalmente, isso inclui testar diferentes modelos durante um único pipeline de
treinamento. Essas validações são realizadas nesta fase de treinamento/avaliação do desenvolvi-
mento do modelo, e muitas vezes são mantidas como código de experimentação, não fazendo
parte do produto final do classificador.

O pipeline de treinamento inicia-se ao carregar o modelo preditivo com a melhor acurácia
na pontuação f1_score por método de extração de característica, é então feito dois estudos de caso
em torno do conjunto de dados do mundo real como o genoma de vertebrados e invertebrados tais
como galinhas, moscas pertencentes à família Drosophilidae, nematódeos da família Rhabditidae,
protozoários da família Trypanosomatidae como o leishmania, humanos e de ornitorrincos:

1. Estudo de Caso: Adicionar o conjunto de dados reais de acordo com sua respectiva
classe de snoRNAs dos genomas encontrados e usar o modelo para predizer este
conjunto.



4.5. ESTUDO DE CASO: CLASSIFICAÇÃO DE SNORNAS EM CONJUNTO DE DADOS
ENCONTRADOS NA LITERATURA 62

2. Estudo de Caso: Comparar os resultados obtidos pela predição do conjunto de
treinamento avaliando o comportamento do classificador com referências de outros
artigos que predizeram as duas classes de snoRNAs (C/D box e H/ACA box)

Para cada estudo de caso, é efetuado um teste sem validação cruzada e outro com
validação cruzada para fins comparativos entre a acurácia da predição por modelo.

Antes da estimação do modelo preditivo, nos estudos de caso em que é feito uma
validação cruzada, a execução do treinamento divide o conjunto em dados de treino e de testes
em diferentes partes do modelo de forma que valide o desempenho de cada modelo em um dado
intervalo, garantindo a generalização dos dados apresentados dentre os melhores parâmetros
encontrados.

O cálculo de acertos e erros é feito pela matriz de confusão que mostra as frequências
de classificação para cada classe de snoRNAs. A matriz nos conduz a uma breve análise das
estimativas ainda que não tenha sido englobada a uma métrica de avaliação, como a figura 4.2
exemplifica.

Figura 4.2: Matriz de confusão na etapa de treinamento usando o método de Entropia de Shannon
para a classe de snoRNAs C/D box. (Labels são rótulos e Predicted são as predições.)
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5
Resultados

Primeiro, será apresentado as estatísticas dos testes de desempenho. Então, posterior-
mente haverá os resultados da execução do classificador em dados reais para verificar a acurácia
das métricas em diferentes organismos.

5.1 Estatísticas

Para identificar snoRNAs H/ACA box e C/D, construiu-se dois conjuntos de dados
diferentes para cada classe de snoRNAs. Para as fases de aprendizado, usou-se um conjunto
de dados como treinamento e o outro para teste usando o método hold-out de separação e de
validação cruzada respectivamente. Cada treinamento foi repetido 10 vezes, e o cálculo das
métricas, desvio padrão e a média estão dispostos nas tabelas para cada classe de snoRNA e
método de extração utilizado. É de suma importância saber que estas métricas foram extraídas
dos melhores estimadores, ou seja, do melhor modelo encontrado baseado pelo f1_score em
torno dos treinamentos envolvidos.

Tabela 5.1: Resultados da fase de teste para snoRNAs C/D box: F-score (FSC), Acurácia (Acc),
Recall (REC), Precisão Média (PRE), Área sob a curva ROC (AUC). A média e desvio padrão

total de cada métrica

Classe (snoRNAs) Método de extração FSC(%) ACC(%) REC(%) PRE(%) AUC(%)

C/D box Fourier Real 98.25 98.81 97.26 99.18 99.85
C/D box Fourier Z-Curve 98.81 99.15 98.27 99.35 99.96
C/D box Entropia de Shannon 79.83 87.37 76.47 84.01 93.71
C/D box Entropia de Tsallis 79.34 86.58 78.34 80.09 93.35
C/D box Redes Complexas 99.72 99.79 99.53 99.94 99.98

Média (%) 90,70 94.35 89.97 92.51 97.37
Desvio padrão (%) 10,60 6,73 11,52 9,65 2,72
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Tabela 5.2: Resultados da fase de teste para snoRNAs H/ACA box: F-score (FSC), Acurácia
(Acc), Recall (REC), Precisão Média (PRE), Área sob a curva ROC (AUC).

Classe (snoRNAs) Método de extração FSC(%) ACC(%) REC(%) PRE(%) AUC(%)

H/ACA box Fourier Real 95.85 98.01 94.08 98.28 98.92
H/ACA box Fourier Z-Curve 96.83 98.49 95.88 98.12 99.46
H/ACA box Entropia de Shannon 40.69 77.84 31.69 58.61 78.92
H/ACA box Entropia de Tsallis 50.41 80.20 44.41 63.21 84.81
H/ACA box Redes Complexas 97.88 98.97 96.41 99.55 99.83
Média (%) 76,33 90,70 72,49 83,55 92,38

Desvio padrão (%) 28,31 10,70 31,77 20,74 9,83

5.2 Estudo de caso

Para validar o classificador Random Forest a partir de métodos matemáticos, usou-se
os conceitos de validação cruzada para separar cada k-dobra ou k-parte em que o valor de k=5.
Para cada dobra, separou-se ambos conjuntos e calculou-se as métricas desejadas (F1, AUC,
PRE, REC, ACC). De acordo com o melhor estimador o modelo foi escolhido e separado para
que seja avaliado em um conjunto de dados reais com sequências previstas de vertebrados e
invertebrados, alguns desses organismos foram parcialmente confirmados em experimentos
anteriores sejam em humanos, nematóides, drosofilídeos, ornitorrincos, galinhas e leishmania.
Todas essas sequências foram extraídas do artigo ARAUJO (2017) que fora consumido como
base comparativa de resultados.

Em ARAUJO (2017), o autor consumiu os conjuntos de validação dos artigos referidos
na listagem abaixo usando o snoReport 2.0, software do qual usa previsão de estrutura secundária
de RNA para identificar as duas classes de snoRNAs (H/ACA box) e (C/D box):

1. YANG et al. (2006) que usa o snoSeeker, um método baseado em modelos proba-
bilísticos, emparelhamento de segmentos do genoma, para encontrar snoRNAs em
equências genéticas de Homo Sapiens.

2. Do trabalho de SCHMITZ et al. (2008) que busca as sequências genéticas em bi-
blioteca de cDNA (combinação de fragmentos clonados de cDNA armazenados em
células hospedeiras) do cérebro do ornitorrinco, gerado a partir de pequenos RNAs
não codificadores de proteína.

3. Do artigo científico de ZEMANN et al. (2006), que extrai sequências genéticas do
conjunto de Caernorhabditis elegans, isto é, um invertebrado da espécie Nematódeo
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para ser usado na combinação de triagem de biblioteca de cDNA com estratégias de
busca e análise computacional para encontrar snoRNAs.

4. De HUANG et al. (2005) o qual perfoma uma análise de larga escala em Drosophila

melanogaster usando métodos RNomics experimentais e computacionais para identi-
ficar classes de snoRNAs.

5. Por fim, o artigo de LIANG et al. (2007) que utiliza patógenos intimamente relaciona-
dos de Leishmania major para identificar classes de snoRNAs a partir da abordagem
de screening por todo o genoma.

A tabela 5.3 mostra os resultados obtidos pelo snoReport 2.0 de ARAUJO (2017).

Tabela 5.3: Resultados do snoReport nas classes de snoRNAs (C/D box e H/ACA box).

Conjunto

Homo Sapiens C/D: (21/21) H/ACA: (28/32)
Platypus C/D: (42/144) H/ACA: (45/73)

Gallus gallus C/D: (122/132) H/ACA: (66/69)
Nematodes C/D: (32/108) H/ACA: (46/60)
Drosophila C/D: (2/63) H/ACA: (39/56)
Leishmania C/D: (0/62) H/ACA: (0/37)

Comparando os resultados obtidos em ARAUJO (2017) pelo snoReport 2.0 levando em
conta os conjuntos de validação dos artigos citados, as tabelas 5.10 mostram o quão eficaz foi o
preditor em classificar os snoRNAs em C/D box ou H/ACA box tendo como base comparativa o
trabalho mencionado conforme tabela 5.4:

Tabela 5.4: Resultados obtidos no trabalho de ARAUJO (2017) usando o software snoReport 2.0
nas classes de snoRNAs.

Conjunto C/D H/ACA

Homo Sapiens (21/21) (28/32)
Platypus (42/144) (45/73)

Gallus gallus (112/132) (66/69)
Nematodes (32/108) (46/60)
Drosophila (2/63) (39/56)
Leishmania (0/62) (0/37)
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Tabela 5.5: Resultados obtidos em nosso classificador usando os métodos de extração de teor
matemático nas classes de snoRNAs.

Tabela 5.6: Método de Fourier Real

Conjunto C/D H/ACA

Homo Sapiens (21/21) (28/33)
Platypus (143/144) (69/73)

Gallus gallus (124/132) (67/69)
Nematodes (106/108) (60/60)
Drosophila (63/63) (55/56)
Leishmania (54/62) (36/37)

Tabela 5.7: Método de Fourier Z-Curve

Conjunto C/D H/ACA

Homo Sapiens (21/21) (33/33)
Platypus (144/144) (72/73)

Gallus gallus (125/132) (69/69)
Nematodes (106/108) (59/60)
Drosophila (63/63) (55/56)
Leishmania (61/62) (36/37)

Tabela 5.8: Método de Entropia de Shannon

Conjunto C/D H/ACA

Homo Sapiens (21/21) (18/33)
Platypus (128/144) (30/73)

Gallus gallus (109/132) (24/69)
Nematodes (73/108) (13/60)
Drosophila (46/63) (8/56)
Leishmania (45/62) (17/37)

Tabela 5.9: Método de Entropia de Tsallis

Conjunto C/D H/ACA

Homo Sapiens (19/21) (27/33)
Platypus (127/144) (52/73)

Gallus gallus (114/132) (24/69)
Nematodes (83/108) (17/60)
Drosophila (49/63) (30/56)
Leishmania (54/62) (21/37)

Tabela 5.10: Método de Redes Complexas.

Conjunto C/D H/ACA

Homo Sapiens (21/21) (33/33)
Platypus (144/144) (73/73)

Gallus gallus (127/132) (69/69)
Nematodes (107/108) (60/60)
Drosophila (62/63) (56/56)
Leishmania (61/62) (37/37)

Usando o método da Transformação de Fourier com o mapeamento numérico de repre-
sentação Real na classe de snoRNAs C/D box, 96.79% das sequências foram encontradas. Na
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classe de snoRNAs H/ACA box, o classificador encontrou 94.81% das sequências.
Com o método da Transformação de Fourier com o mapeamento numérico de representa-

ção Z-curve na classe de snoRNAs C/D box, 98.49% das sequências foram encontradas. Na
classe de snoRNAs H/ACA box, 98.78% das sequências foram encontradas.

Já com o método de Entropia de Shannon na classe de snoRNAs C/D box, 76.79%
das sequências foram encontradas, tendo essa defasagem na estimativa em comparação com os
métodos de Fourier. Na classe de snoRNAs H/ACA box, apenas 35.67% das sequências foram
encontradas, tendo o pior resultado entre os outros métodos relatados.

Na Entropia de Tsallis, o método conseguiu encontrar 82.26% das sequências de
organismos vertebrados e invertebrados para a classe de snoRNAs C/D box. Na classe de
snoRNAs H/ACA box, 58.84% das sequências foram encontradas.

Por fim, o método de Redes Complexas na classe de snoRNAs C/D box encontrou
98.49% das sequências. Na classe de snoRNAs H/ACA box, 99.69% das sequências foram
encontradas.

Separadamente, em resumo, o classificador foi eficiente em identificar os organismos
vertebrados e invertebrados do conjunto de validação. Considerando que o total de sequências
da classe snoRNAs C/D box de organismos vertebrados é 297 e invertebrados é 233 e para a
da classe snoRNAs H/ACA box é 175 e 153 respectivamente, é evidente que os algoritmos de
Fourier e o de Redes Complexas foram consideravelmente significativos na classificação tendo
uma acurácia maior que 90% em ambas predições das duas classes de snoRNAs. Ainda que os
métodos de Entropia não foram tão eficientes, para a classe snoRNAs C/D box conseguiram ter
uma eficiência em torno dos 80% de acurácia,

As tabelas 5.12 e 5.13 mostram o diagnóstico da quantidade de sequências encontra-
das por método de extração de características em organismos vertebrados e invertebrados em
comparação com a tabela 5.11.

Tabela 5.11: Quantidade de sequências encontradas usando o snoReport 2.0 no trabalho de
ARAUJO (2017).

Ferramenta C/D Acurácia (C/D) H/ACA Acurácia (H/ACA)

snoReport 2.0 (vertebrados) 175 58.92 139 79.88
snoReport 2.0 (invertebrados) 34 14.59 85 55.55
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Tabela 5.12: Quantidade de sequências encontradas por método de extração de características em
organismos vertebrados

Método C/D Acurácia (C/D) H/ACA Acurácia (H/ACA)

Fourier Real 288 96.96 161 96.56
Fourier Z-Curve 291 97.97 174 99.14

Entropia de Shannon 250 84.17 84 67.38
Entropia de Tsallis 255 85.85 128 77.68
Redes Complexas 292 98.31 175 98.71

Tabela 5.13: Quantidade de sequências encontradas por método de extração de características em
organismos invertebrados

Método C/D Acurácia (C/D) H/ACA Acurácia (H/ACA)

Fourier Real 225 92.0 150 98.03
Fourier Z-Curve 231 99.42 150 98.03

Entropia de Shannon 157 48.0 65 42.48
Entropia de Tsallis 181 73.14 88 57.51
Redes Complexas 230 100.0 152 99.34

5.3 Discussão

Neste trabalho, construiu-se um conjunto de dados pré-processado usando uma estratégia
de filtração de dados no intuito de remover a redundância entre eles, além de implementar
um algoritmo de embralhamento do sequencial genético para produzir o conjunto negativo.
Refinou-se a fase de treinamento do método Random Forest escolhendo cuidadosamente os
parâmetros do classificador Random Forest usando pesquisas de grade (função GridSearchCV).
Diferentes métodos de extração de características de cunho matemático foram aplicados com
a finalidade de verificar a consistência dos algoritmos na classificação de snoRNAs. Diversas
métricas de avaliação foram inclusas para apreciação de acurácia do modelo preditivo de forma
geral. Estes procedimentos permitem avaliar a perfomance do classificador ao longo do processo
excessivo e extenso de aprendizado de máquina os quais configuram as estimativas de snoRNAs
no modelo pré-estabelecido de entrada.

Percebe-se que nos resultados alcançados, os algoritmos de extração de Fourier com o
mapeamento numérico Real e Z-curve tiveram um destaque atingindo uma proporção maior que
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90% em todas as medidas de desempenho apresentadas tanto para snoRNAs C/D box quanto
para snoRNAs H/ACA box permitindo-nos ter alta taxa de qualidade em cada previsão. Assim
como os algoritmos de Fourier tiveram tal atenção, o algoritmo de Redes Complexas atingiu uma
taxa similar em consonância com os resultados de Fourier, demonstrando serem ótimos métodos
de extração de característica para o algoritmo Random Forest.

Embora os algoritmos citados tenham sido efetivos na classificação, os de natureza
entrópica não foram efetivos na predição atingindo um F-score em torno de 80% na predição de
snoRNAs C/D box e aproximadamente 45% na predição de snoRNAs H/ACA box. Embora a
curva ROC AUC apresente um alto índice de confiabilidade exibindo uma porcentagem quase
maior que 80%, ainda assim o algoritmo mostrou ser insuficiente em predizer as amostras.

Vale ressaltar que, segundo ARAUJO (2017), muitas sequências usadas para validação
ainda não foi experimentalmente validadas, e talvez alguns deles possam ser falsos positivos, ou
não são representantes dos snoRNAs canônicos (como os snoRNAs na leishmânia).

Outra observação importante é que a validação envolveu apenas as amostras positivas de
dados e portanto é crucial fazer uma avaliação negativa envolvendo também o conjunto negativo
para que o algoritmo de classificação possa ter mais trabalho em classificar os organismos
vertebrados e invertebrados.

Apesar disso, ainda que a fase de treinamento não tenha sido composto pelo conjunto
negativo, o classificador identificou 96.60% snoRNAs C/D box e 96.03% snoRNAs H/ACA box

nos organismos vertebrados e invertebrados usando o método de Fourier Real enquanto o método
de Fourier Z-Curve encontrou 98.49% snoRNAs C/D box e 98.78% snoRNAs H/ACA box. O
algoritmo de Redes Complexas identificou 98.49% snoRNAs C/D box e 99.69% snoRNAs
H/ACA box nos organismos vertebrados e invertebrados.

Portanto, o classificador é eficiente nos métodos de extração de Fourier e Redes Comple-
xas para identificar ambas as classes de snoRNAs e pode ser usado para organismos diferentes,
sendo vertebrados ou invertebrados, com alta qualidade de previsão.
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6
Conclusão

Essa metodologia adotada pelo modelo de AM em modificar e rotular a informação
não estruturada em valores contínuos e discretos contribui para compreensão e visualização de
cada aspecto presente, mesmo que não tão "visível", das estruturas genômicas espalhadas em
organismos vivos. Na proporção em que o avanço científico na área de Inteligência Artifical vêm
ganhando forças, novas abordagens são constatadas no meio em torno dos processos de extrações
de características, sejam eles de natureza biológica, matemática e/ou híbrida. É expressivo
e relevante compreender como cada algoritmo de extração se comporta diante a classificação
binária de sequências genômicas para que abra espaço para elucidação do genoma em um espectro
científico que irá proporcionar descobertas de novas doenças, novos padrões de proteínas e na
criação de remédios contra estas novas doenças. Entender um padrão e correlacioná-lo à uma
classe, ou melhor, conseguir categorizar um grupo no mundo biológico não é uma tarefa simples,
tanto que diferentes abordagens são disseminadas porém, nem todas são eficazes o suficiente
para serem relevantes.

O estudo de novos métodos, principalmente os de caráter matemático, demonstrou ser
promissor diante da constatação e validação dos experimentos apresentados em torno destes
algoritmos de teor matemático. Em particular, o algoritmo de transformação numérica de
Fourier e o algoritmo de Redes Complexas que revelaram uma taxa significativa nas métricas de
avaliação tornando-se expressivos na classificação de pequenos RNAs nucleolares (snoRNAs),
em exclusivo às classes C/D box e H/ACA box na medida em que reconhece o conjunto e
adquire conhecimento sobre as features no processo preditivo. Ainda que solidificado em um
único algoritmo de classificação (Random Forest), os algoritmos de extração provaram serem
capazes de traduzir a informação não descritiva das sequências genéticas em uma amostragem
descricionária sobre os snoRNAs para que o classificador possa designar cada característica
ás sub-árvores do Random Forest e aperfeiçoá-las com seus hiperparâmetros. No fim, as suas
tomadas de decisão sucedeu um percentual maior que 90% de acurácia no estágio de validação
do conjunto real de dados.

Para trabalhos futuros, uma ideia seria incluir novos conjuntos de dados para diferentes
tipos de organismos (não apenas aqueles que foram citados nos resultados) e comparar as métricas
do classificador Random Forest usando diferentes métodos de aprendizado de máquina (por
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exemplo, SVM, K-Nearest Neighbor (KNN) ou até mesmo o EDeN que é baseado no conceito
do KNN mas para grafos) pois pode ser que encontrem características intrínsecas ou mesmo
prever novos snoRNAs. Poderia também treinar os dados utilizando outros hiperparâmetros para
os classificadores, sempre analisando a melhor abordagem para àquele determinado conjunto
e evitando o overfitting. Outra sugestão é se beneficiar do classificador para a construção
de uma ferramenta de identificação de snoRNAs em genomas. (identificação seria encontrar
os candidados a snoRNAs no genoma e usar o classificador logo em seguida). Além disso,
como mencionado no tópico de Discussão, é essencial fazer uma avaliação negativa envolvendo
também amostras negativas no conjunto de validação para que o algoritmo de classificação possa
ter mais trabalho em classificar os organismos vertebrados e invertebrados.
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